OTA 2015

Open Ankle Fractures: What Predicts Infection?

Paul Tornetta, MD¹; **Margaret Cooke, MD**¹; Douglas Weinberg, MD²; Heather Vallier, MD²; Reza Firoozabadi, MD³; Timothy Alton, MD⁴; Megan Shimota, MD⁵; CAPT (ret) Michael Bosse, MD⁶; Jerald Westberg, BA⁵; Daniel Leas, MD⁶; Michael Archdeacon, MD⁷; Rafael Kakazu, MD⁷; Robert O'Toole, MD⁸; Timothy Costales, BS⁹; Brian Mullis, MD¹⁰; Kenneth Egol, MD¹¹; Stephen Kottmeier, MD¹²; David Sanders, MD¹³; Clifford Jones, MD, FACS¹⁴; Anna Miller, MD, FACS¹⁵; ¹Boston Medical Center, Boston, Massachusetts, USA; ²MetroHealth System, Cleveland, Ohio, USA; ³Harborview Medical Center, Seattle, Washington, USA; ⁴University of Washington Hospitals, Seattle, Washington, USA; ⁵Hennepin County Medical Center, Minneapolis, Minnesota, USA; ⁶Carolinas Medical Center, Charlotte, North Carolina, USA; ⁷University of Cincinnati Department of Orthopaedics, Cincinnati, Ohio, USA; ⁸Shock Trauma Center, Baltimore, Maryland, USA; ⁹University of Maryland School of Medicine, Baltimore, Maryland, USA; ¹⁰Eskenazi Health Indianapolis, Indiana, USA; ¹¹New York University Hospital for Joint Diseases, New York, New York, USA; ¹²University Hospital; Stony Brook, New York, USA; ¹³Victoria Hospital, Ontario, CANADA; ¹⁴Orthopaedic Associates of Michigan, Grand Rapids, Michigan, USA; ¹⁵Wake Forest Baptist Hospital, Winston-Salem, North Carolina, USA

Purpose: Data on the complication rates of open ankle fractures are from small data sets or aggregate data that lack precision and detail. The purpose of this study was to identify the patient, injury, and treatment factors associated with infection of open ankle fractures in a large data set generated from individual chart reviews.

Methods: We reviewed the records of a consecutive series of patients presenting to 13 trauma centers with open indirect ankle fractures. Patients with plafond injuries were excluded. We gathered demographic information including: age, gender, BMI (body mass index), smoking history, diabetes, immunosuppressive medications, neuropathy, and OTA fracture type; and treatment variables including: timing and duration of antibiotics, timing of debridement, and method of closure. Infection was defined two ways: first as the combination of superficial or deep purulence, and second with the addition of wound dehiscence. Statistical comparisons were made using Fisher exact and Student t tests for categorical and continuous data.

Results: We reviewed 613 patients, (312 male, 301 female) aged 18-96 years (average 52) with an average BMI of 32 who sustained OTA types 44A (11%), 44B (60%), and 44C (29%) open ankle fractures; 433 (72%) were dislocated upon presentation. Average follow-up was 392 days. There were 95 patients with diabetes, of whom 31 were insulin dependent and 37 had documented neuropathy. 22 patients were on immunosuppressive medications. 226 patients (41%) were smokers. Increased BMI, OTA type, immunosuppressive medications, or presence of dislocation were not significantly associated with infection (P>0.05). The overall infection rate in the series was 12% and rose to 17% when including wound dehiscence. Diabetes was associated with an increased risk of infection (24%; P = 0.0006) and was 32% when including wound dehiscence (P = 0.0002). Smoking (P = 0.04) and increasing Gustilo

See pages 47 - 108 for financial disclosure information.

type (P = 0.005) also correlated with infection. The table details the rates of infection by open fracture type. Initial antibiotics were given within 6 hours in 86% and 12 hours in 94% and neither cutoff was associated with infection. There was no difference in the average time to antibiotic administration for those who developed infection versus those who did not (3.8 hours vs 3.7 hours; P = 0.95). The time to initial debridement tended to be longer for those who developed purulence (P = 0.15). Debridement at >6 hours (17% vs 9%; P = 0.03) and >12 hours (21% vs 11%; P = 0.003) after injury was associated with infection. Cases that developed infection were closed at an average of 14.2 days versus 3.3 days for those that did not become infected (P = 0.004). Primary and delayed primary closure was achieved in 93% of cases. Primary closure resulted in a lower rate of infection (P = 0.006). Overall there were 51 cases of malunion, nonunion, and loss of reduction. Infection resulted in a higher rate of these complications (P = 0.02).

Conclusion: In this large series of open ankle fractures, several patient and injury factors were found to be associated with infection and wound breakdown including diabetes, smoking, and increasing severity of open fracture. We found no association between the timing of initial antibiotics, but all centers were efficient and 86% were given antibiotics within 6 hours of injury, limiting our ability to evaluate this as a factor. However, debridement after 6 hours and 12 hours demonstrated incremental increases in infection rates. Finally, a shorter time to wound coverage and the ability to close the wound primarily were associated with a lower risk of infection.

Open Ankle Fractures: What Predicts Infection?

Gustilo Type	1	2	3A	3B,C
% Infection	6%	15%	18%	36%

Table: Infection including wound dehiscence by Gustilo type

Risk Factors vs. Infection						
NOT Associated wi	th Infection	Associated with Infection				
Factor	P Value	Factor	P Value			
BMI	0.22	Diabetes	0.0002			
OTA Classification	0.81	Smoking	0.04			
Dislocation	0.07	Gustilo Type	0.005			
Immunosuppressive Meds	0.18	Time to Debridement	0.02			
Time to Antibiotics	0.88	Time to Closure	0.004			

The FDA has stated that it is the responsibility of the physician to determine the FDA clearance status of each drug or medical device he or she wishes to use in clinical practice.