Lumbopelvic Fractures and Fixation

Richard Bransford, MD
Professor of Orthopaedic Surgery
University of Washington, Harborview Medical Center

Jonathan Kark, MD
Assistant Professor of Orthopaedic Surgery
University of Kentucky
Objectives

• Introduction to “spinopelvic dissociation”
• Anatomy
• Pathoanatomy
• Epidemiology
• Clinical evaluation
• Radiographic evaluation
• Fracture Classifications
• Importance of kyphosis reduction / sagittal balance
• Hardware placement and reduction techniques
• Common pitfalls
Spinopelvic Dissociation

• Bilateral longitudinal sacral fractures, connected with a transverse component, resulting in separation of the axial skeleton from the appendicular skeleton

• Often times treated with Iliosacral or transiliac-transsacral screw fixation, however lumbopelvic fixation is utilized in specific instances due to anatomy of severity of injury
 • Sacral dysmorphism
 • Spinopelvic instability with displaced U-type variant
Anatomy

• Transmission of the torso’s weight is directed via axial loading through the spine at the lumbosacral junction

• Weight is transmitted from the lumbosacral junction, through the sacroiliac joints, and from the ilium to the lower extremities

• Skeletal support and muscular forces keep the head centered over the pelvis in the coronal and sagittal planes, preventing imbalance
Pathoanatomy

- Dissociation of the axial spine from the pelvis results in loss of osseous integrity
- May lead to kyphotic deformity
 - Initial deforming force at time of injury
 - Psoas muscle (T12-L4 transverse process to lesser trochanter of femur) can flex through sacral fracture
 - Gravity can cause progressive kyphotic deformity in undiagnosed insufficiency fractures
- Results in progressive positive sagittal balance, and/or neurologic deficits from nerve compression in the sacral canal
Epidemiology

• Bimodal distribution
 • Young patients typically with high energy mechanisms
 • Fall from height (suicide jumper)
 • Auto vs pedestrian
 • Motorcycle accident
 • Automobile collisions

• Older patients with lower energy / insufficiency fractures
 • Ground level falls
 • Trauma in setting of osteoporosis
 • Failure of conservative treatment
Epidemiology

• Fractures of the pelvis represent less than 3% of skeletal injuries
 • Sacral fractures occur in 45% of pelvic fractures
• Only 3-5% of sacral fractures are spinopelvic dissociations
• 4.5% of sacral fractures have transverse component
• 25% of sacral fractures have a neurologic component

• No good data on the incidence of geriatric sacral insufficiency fractures requiring surgery
Clinical Evaluation

- Always evaluate for lacerations, bruising, tenderness, swelling, crepitus, sacral prominence, or subcutaneous fluid collection/degloving (Morel-Lavelle lesion)
- Any report of pain with AP or lateral compression of the pelvis should prompt imaging
- Neurologic evaluation
 - Predisposed to bowel, bladder, and sexual dysfunction given the location of sacral fractures
 - If sacral injury is more caudal to S1, motor exam my appear normal
 - Rectal exam is needed to assess motor function more distal to S1
- Urogenital examination to assess for urethral, bladder, rectal and/or vaginal injuries as well as open fractures
Radiography

- AP x-ray obtained as part of standard trauma workup
 - Inlet and outlet views if concern for pelvic ring injury
 - Inlet – shows sacral canal and superior view of S1
 - Outlet – true AP of the sacrum
 - Either performed with standard radiography, or with CT reformats

- CT pelvis reformats allow for visualization of transverse fracture lines, sacral kyphosis

- MRI used to assess nerve root / cauda equina compression
Radiologic Findings

• Plain radiography only identifies ~30% of sacral fractures. Advanced imaging is recommended
 • CT with 1-2mm cuts, as well as coronal and sagittal reconstruction to assess bony anatomy
 • MRI is better utilized to assess for areas of neural compression

• Paradoxical inlet view of the upper sacrum on the standard AP pelvic radiograph

• L5 transverse process fracture found in 61% of patients with sacral fracture

• "stepladder sign" = anterior sacral foraminal disruption
Paradoxaical Inlet XR
“Step Ladder” sign
Fracture Classification

• **Denis Classification** – Does not take spinopelvic stability into account
 - Based upon location of fractures relative to sacral foramen and associated risks of neurologic deficits

 Zone I: 5.9% incidence of predominantly L5 nerve root injury

 Zone II: 28.4% incidence of L5, S1 nerve root injury

 Zone III (central canal fracture): 56.7% incidence of neurologic injury, usually sacral plexus or cauda equina
Denis Classification – Zone III

- Not just purely longitudinal or transverse, but complex, multiplanar fractures

- Any fracture that is transverse is, by definition a Denis Zone III, however when combined with bilateral longitudinal fractures, the resulting "U", "H", "Y" and "Lambda" fracture patterns result in spinopelvic dissociation
Modifications of Denis Classification

• The Denis Classification did not allow for characterization of displacement and angulation patterns

• Roy-Camille (1-3) and Strange Vognsen – Lebech (4) classified the type IIIIs based upon displacement and angulation
AO Sacral Fracture Classification

C0 Nondisplaced sacral U-type variant

C1 Sacral U-type variant without posterior pelvic instability

C2 Bilateral complete Type B injuries without transverse fracture

C3 Displaced U-type sacral fracture
Importance of kyphosis reduction

• Goal of fixation is to correct and prevent further displacement, which can lead to postural malalignment, chronic pain, and neurologic compromise

• Restoration of appropriate sagittal alignment of the sacral fracture “decreases pain by preventing compensatory lumbar hyperlordosis, allowing for more physiologic alignment of the lumbar spine”

• Normal pelvic incidence (~50 degrees +/- 10 degrees) can be used an objective measure of adequacy in reduction of sacral kyphosis
Hardware Placement

- Anterior pelvic ring injuries and/or acetabular injuries must be addressed first, as the rigidity of lumbopelvic fixation will prevent any further reduction.

- Lumbopelvic fixation provides the most rigid fixation of sacral fractures, as compared to transacral screws.

 - Obtained by pedicle screws placed at L5, and screw fixation in the ilium.
 - If poor bone quality, L5 pedicle is involved, or preexisting L4-5 instability, extension to L4 is warranted.
 - Allows for earlier mobilization, if other injuries allow.
 - S1 screws are not routinely placed due to poor purchase in fractured sacrum.
Percutaneous vs Open

- Percutaneous fixation has been shown to have similar restoration of pelvic incidence, lumbar lordosis, operative time, and length of stay, although not studied in severe displacement

- Percutaneous does have less estimated blood loss, although both open and percutaneous fixation required transfusions at a similar rate

- Percutaneous allows for indirect decompression of sacral nerve roots, whereas open allows for sacral laminectomy and direct decompression
Percutaneous
Neurologic Decompression

• When neurologic deficits are present, direct decompression by laminectomy may enhance neurologic recovery
 • Although, neurologic injuries secondary to sacral fractures are not considered neurologic emergencies, and surgical timing does not necessarily correlate with neurologic recovery

• Sacral laminectomy should be performed cranial to caudal, decompressing S1-4, lateral to the sacral pedicles, to ensure thorough decompression
 • Up to 80% of patients experience improvement in neurologic function following spinopelvic instability fractures, regardless of treatment
Fracture Reduction – Indirect with traction

- Restoration of length is required for successful fracture realignment
- Bifemoral traction allows for dis-impaction of the cranial and caudal fracture fragments, and allows for restoration of fracture length and some sagittal alignment
Fracture Reduction – Utilization of Distractor

- Femoral distractor utilizes Schanz pins placed ipsilaterally in same trajectory as spinopelvic hardware to hold distraction

- Allows for sacral laminectomy, and access to transverse fracture line by mobilization of sacral nerve roots
- Elevator placed in to fracture line, and a Schanz pin placed in cranial sacral piece, for joysticking of fracture
- Distraction can be decreased once reduction is obtained, and Iliosacral / transsacral screws can be placed
Fracture Reduction – Utilization of Cobbs and Schantz Pins

- Elevator placed in to fracture line, and a Schanz pin placed in cranial or caudal sacral piece, for joysticking of fracture
- Cobbs can also be places into fracture to tray and dis-impact
Fracture Reduction – Indirect with Contouring of Rods

• Once lumbar pedicle screw and iliac bolt placed, a temporary rod is locked in to place on once screw, allowing for distraction across the other
• Once length is established, 2nd screw is locked down
• Rod is then contoured with in situ benders to correct kyphosis
• Once reduction is complete, contralateral rod is placed, and then initial rod is replaced with a new, unstressed, rod.
Fracture Reduction – Indirect with Contouring of Rods

Lumbo-pelvic Fixation
With Distraction and Rod Contouring
Complications

• Often due to high energy mechanisms, with traumatized soft tissue envelope, predisposing to wound complications
 • Percutaneous screws may be preferable in this situation, however the nature of the injury may necessitate open treatment

• Lack of soft tissue in this area may lead to painful prominent hardware, skin breakdown, and necessitate hardware removal

• Broken hardware usually occurs after fracture has healed, due to micromotion at the SI joint
Complications

- traumatized soft tissue envelope
- prominent hardware
Common Pitfalls

• Sacral fractures can be missed up to 30% of the time, especially insufficiency fractures
• Neurologic compromise is often distal to S1, and will not be picked up on a motor examination
• Distraction across fracture, may predispose to non-union, so caution should be taken when distracting across pedicle screws for reduction
Case Example: Sacral Insufficiency

77 year old female, with 2 months of pain during ambulation, following a ground level fall, in the setting of osteoporosis. Neurologically intact
Case Example: Sacral Insufficiency
Case Example: Sacral Kyphosis with sacral nerve root dysfunction

18 year old female, struck by a motor vehicle, with loss of S2-4 function
Case Example: Sacral Kyphosis with sacral nerve root dysfunction
Case Example: Combined spinopelvic dissociation and pelvic ring

69 year old male, motorcycle wreck at high speeds, with concomitant pelvic ring injury
Case Example: Combined spinopelvic dissociation and pelvic ring

Pelvic ring injury treated 1st, with anterior plating, and right sided iliosacral screws. Due to poor corridors, lumbopelvic fixation was used.
Summary

• Spinopelvic dissociation is a rare, but devasting injury, whose instability can lead to progressive deformity and neurologic compromise if not addressed appropriately.

• Occurs in both the young and elderly populations, although due to different underlying mechanisms.

• Lumbopelvic fixation is an appropriate treatment option, should iliosacral or transiliac transsccaral screw fixation not be an option.

• Sacral laminectomy is often needed, both for nerve root decompression, but also for direct fracture reduction.
References

References