Radial Head and Neck Fractures

Thomas Krupko M.D.
Assistant Professor – Orthopaedic Trauma
University of Florida
Objectives

• Anatomy
• Elbow Instability
• Radial head fractures
 • Classification
 • Treatment
• Radial neck fractures
 • Treatment
• Essex-Lopresti Injuries
Anatomy
Anatomy – Superficial Lateral Elbow

- Triceps
- Lateral Epicondyle
- Olecranon
- Biceps
- Common Extensor Origin

Reference: Clinical Library of Thomas Krupko MD
Anatomy - PIN

Anatomy – Deep Lateral Elbow

Reference: Rockwood and Green’s - Figure 32.2
Anatomy – Lateral Elbow

- Lateral Epicondyle
- Greater Sigmoid Notch
- Olecranon
- LUCL
- Coronoid
- Radial Notch
- Radius (head resected)
- Supinator Crest

Reference: Clinical Library of Thomas Krupko MD
Anatomy – Medial Elbow

Reference: Rockwood and Green’s - Figure 32.2
Elbow Stability
Elbow Stability

• Static
 • Ulno-humeral joint
 • Radio-humeral Joint
 • LUCL
 • Anterior bundle of MCL

• Dynamic
 • Common flexor origin
 • Common extensor origin
 • Biceps
 • Brachialis
 • Triceps

• Radius resists axial load and valgus
Mechanism of Injury

- Typically fall onto outstretched hand
 - Axial loading
 - Valgus force
- Radial head/neck fractures occur along a spectrum of elbow instability
- Any treatment requires complete understanding of the injured bone and soft tissue
 - CT scan can provide valuable info

Reference: Rockwood and Green’s - Figure 32.16
Elbow Instability

Stable

Simple dislocation
Radial Head Fx
Radial Head Fx + Dislocation

Unstable

Post Trans Olecranon Fx Dislocation
Terrible Triad

Reference: Previous OTA Slides
Radial Head Fractures

- Mason Classification – Type 1
 - Non-displaced fx or minimally displaced (<2mm)
 - No mechanical block to forearm rotation

Reference: Previous OTA Slides and the Clinical Library of Thomas Krupko MD
Radial Head Fractures

• Mason Classification – Type 2
 • Displaced >2mm or angulated
 • Possible block to rotation

Reference: Previous OTA Slides and the Clinical Library of Thomas Krupko MD
Radial Head Fractures

- Mason Classification – Type 3
 - Comminuted
 - Displaced
 - Obvious block to rotation

Reference: Previous OTA Slides and courtesy of Thomas Wright MD
Radial Head Fractures

• Mason Classification – Type 4
 • Hotchkiss Modification
 • Bridges the gap with more complex elbow instability
 • Radial head fx with elbow dislocation

• Beware LUCL avulsion and coronoid fx (terrible triad)

Reference: Clinical Library of Thomas Krupko MD
Radial Head Fractures – Treatment Algorithm

Fracture Size > 25%

No

Displacement > 2mm

No

Early Motion

Yes

Motion Limited

No

Early Motion – Close F/U

Yes

Excision of Fragment

Displacement > 2mm

No

Motion Limited

Yes

3 or More Fragments

No

Early Motion – Close F/U

Yes

ORIF

Reference: Revised from Previous OTA Slides
Lateral Elbow – Approaches

- Kocher
 - Most often utilized for radial head
 - Interval
 - Anconeus – Radial Nerve
 - ECU – PIN
 - 5cm incision from lateral epicondyle distally
 - Angled posteriorly 30-45 degrees
 - Often deep soft tissues will be disrupted by injury

Reference: Clinical Library of Thomas Krupko MD
Lateral Elbow – Approaches

• Kocher Pitfalls
 • Damage to LUCL
 • Stay on anterior half of radial head
 • Damage to PIN
 • Pronate the arm to move nerve distally
 • Carefully dissect distal to annular ligament

Reference: Rockwood and Green’s - Figure 32.2
Lateral Elbow—Approaches

• Kaplan
 • Distal extension becomes dorsal Thompson approach
 • More often used for radial neck/proximal radial shaft fxs
• Interval
 • ECRB – Radial nerve or PIN (variable)
 • EDC – PIN
• 10cm incision from lateral epicondyle to Lister’s Tubercle
Lateral Elbow—Approaches

• Kaplan Pitfalls
 • PIN injury
 • Palpable between two heads of supinator.
 • Distal dissection can be utilized to locate the nerve (see image)
 • Can also split supinator (next slide)

Reference: Clinical Library of Thomas Krupko MD
Lateral Elbow—Approaches

• Kaplan Pitfalls
 • PIN injury
 • Palpable between two heads of supinator.
 • Image shows supinator split and nerve exposed

Reference: Clinical Library of Thomas Krupko MD
Lateral Elbow—Approaches

• Kaplan Pitfalls
 • PIN injury
 • Final approach gives significant exposure of radial head, neck, and proximal shaft for more complex fractures

Reference: Clinical Library of Thomas Krupko MD
Lateral Elbow – Less Common Approaches

- EDC Split
 - Roughly half way between Kocher and Kaplan
 - Pros and Cons the same as these approaches

- Modified Boyd
 - Posterior approach
 - Elevate LUCL from lateral epicondyle
 - Can be used for combined olecranon/radial head fxs
 - Possible risk of synostosis
 - See references for complete technique
Radial Head Fractures – Treatment Algorithm

Fracture Size > 25%

- No
 - Displacement > 2mm
 - No
 - Early Motion
 - Yes
 - Excision of Fragment
 - Yes
 - Motion Limited
 - No
 - Early Motion – Close F/U
 - Yes
 - Early Motion – Close F/U

Displacement > 2mm

- No
 - Motion Limited
 - No
 - Early Motion – Close F/U
 - Yes
 - Excision of Fragment
 - Yes
 - 3 or More Fragments
 - No
 - ORIF
 - Yes
 - Arthroplasty

Reference: Revised from Previous OTA Slides
Radial Head Fractures – Excision

- Isolated radial head (stable joint)
 - Partial or complete resection can be a reliable option
 - Beware subtle instability
 - May lead to PLRI or radial shortening long term

- Radial head fx with ulno-humeral or longitudinal instability
 - Complete resection is contra-indicated
 - Partial resection a viable treatment option for small fragments (<25% of joint)

See References for more on long-term outcomes
Radial Head Fractures – Treatment Algorithm

Fracture Size > 25%

No

Displacement > 2mm

No

Early Motion

No

Early Motion

− Close F/U

Yes

Motion Limited

No

Early Motion

− Close F/U

Yes

Excision of Fragment

Yes

Displacement > 2mm

No

Motion Limited

No

ORIF

Yes

3 or More Fragments

No

ORIF

Yes

Arthroplasty

Reference: Revised from Previous OTA Slides
Radial Head Fractures - ORIF

- Articular fx
 - Anatomic reduction
 - Compression

- Implants
 - Mini-frag screws
 - Headless compression

Reference: Courtesy of Matthew Patrick MD
Radial Head Fractures - ORIF

• Articular fx
 • Anatomic reduction
 • Compression

• Implants
 • Headless compression
 • Tripod Technique
 • See references for technique guide

Reference: Courtesy of Jacqueline Geissler MD
Radial Head Fractures - ORIF

- Articular fx
 - Anatomic reduction
 - Compression

- Implants
 - Periarticular locking plates

Reference: Courtesy of Matthew Patrick MD
Radial Head Fractures – Implant Placement

- Care must be taken to keep implants out of the proximal radio-ulnar joint
 - Block to supination and pronation

- Safe zone
 - 100 degree area
 - Between tip of radial styloid and Lister’s Tubercle

Reference: Previous OTA Slides
Radial Head Fractures – Greenspan View

Reference: Clinical Library of Thomas Krupko MD
Radial Head Fractures – Intra-op Greenspan
Radial Head Fractures – Treatment Algorithm

Fracture Size > 25%

No

Displacement > 2mm

No

Early Motion

Early Motion – Close F/U

Motion Limited

No

Early Motion

Motion Limited – Close F/U

Yes

Excision of Fragment

3 or More Fragments

No

ORIF

Yes

Arthroplasty

No

Yes

Motion Limited

Early Motion

Early Motion – Close F/U

Reference: Revised from Previous OTA Slides
Radial Head Fractures - Replacement

• Head options
 • Round
 • Easier placement
 • Eccentric
 • Mimics native anatomy
 • More difficult to place
 • Bipolar
 • Articulates at the head/neck junction
 • Dislocation can occur

• Stem options
 • Smooth
 • Loose fitting stem
 • Allows implant to find proper alignment
 • Porous/Pressfit
 • Can loosen causing pain
 • Can result in dilatory remodeling
 • Cemented
 • Typically used for salvage
Radial Head Fractures - Overstuffing

- Radial head height typically 0.9mm proximal to lateral coronoid process
- Only 2mm overstuffing causes 1mm of ulno-humeral gapping
- Common complication
 - Especially in unstable elbows that allow for the placement of large implants
- Leads to....
 - Possible increased rate of capitellar erosion
 - Decreased flexion
 - Medial subluxation of the ulna

Reference: Clinical Library of Thomas Krupko MD
Radial Head Fractures - Overstufing

Correct Size

Overstuffed

Reference: Clinical Library of Thomas Krupko MD and Courtesy of Thomas Wright MD
Radial Head Fractures - Overstuffing

• Direct visualization
 • Most accurate way to determine appropriate head size
 • Radial head should be just at or proximal to radial notch of the ulna
 • Pictures show appropriate placement

• Intra-op Fluoro
 • Needs to be assessed in flexion and extension
 • Less reliable
 • > 6mm overstuffing must be present to consistently be seen on fluoro

Reference: Courtesy of Matthew Patrick MD
Radial Head Fractures – Stem Loosening

• Occurs with press-fit stems
• Typically within 1 year of surgery
• Significant dilatory remodeling of the proximal radius can also occur

• Removal of the implant may lead to proximal migration of the radius
• Cemented arthroplasty can be used for salvage if needed

Reference: Courtesy of Matthew Patrick MD
Radial Head Replacement – Outcomes

• Mid to long term outcomes are good to excellent typically

• Elbow stiffness is most common complication
 • Average approx. 10-135 degrees

• Loss of flex/ext strength of approx. 10%

• Peri-implant lucency common, but rarely requires revision

• Rate of OA approx 30%
Radial Neck Fractures
Radial Neck Fractures - Treatment

- Similar to radial head
- Non displaced
 - Non-op
- Displaced
 - No block to motion
 - Non-op
 - Block to motion
 - ORIF

Reference: Clinical Library of Thomas Krupko MD
Radial Neck Fractures - ORIF

• Kocher approach
 • Transverse neck fractures

• Kaplan/Thompson approach
 • Extension into the proximal radius

• Kickstand screws
 • Simple fx patterns only

• Plating (mini-frag vs anatomic)
 • Comminution

Reference: Clinical Library of Thomas Krupko MD
Complications

• Similar to radial head
 • PIN injury
 • Impingement of implants
• Stiffness
 • Most common
 • Functional ROM of flexion/extension is 30-130 degrees

Reference: Previous OTA Slides and the Clinical Library of Thomas Krupko MD
Essex-Lopresti Injuries
Essex-Lopresti Injuries

• Radial head/neck fracture with:
 • Interosseous membrane disruption
 • DRUJ disruption

• Physical exam
 • Palpation of DRUJ for tenderness and shuck of the joint is critical

• Radiographs
 • Be sure to evaluate entire film
 • Contralateral films may help in diagnosis

Reference: Courtesy of Thomas Wright MD
Essex-Lopresti Injuries

• Treatment (Controversial!!)
 • Step 1 – Obtain contralateral films
 • Step 2 – Pin the DRUJ vs repair of TFCC
 - Attempt to match contra side
 • Step 3 – ORIF or arthroplasty of radial head
 • Step 4 – Possible reconstruction of interosseous ligament

• Pre-op contralateral films are essential to restore length and wrist alignment

Reference: Courtesy of Thomas Wright MD
Post-op Protocol
My Post-op Protocol

• For all stabilized fxes and dislocations regardless of fixation

• Initially
 • Immobilization for 10-14 days

• Secondarily
 • Early ACTIVE range of motion
 • Allows dynamic stabilizers to help hold reduction of joint
 • Will reduce pseudosubluxations
 • Limits elbow stiffness

• Some limit active shoulder abduction if LUCL was repaired
Summary

• Anatomy
 • Lateral elbow ligaments and PIN location are critical

• Elbow Instability
 • Make sure that you understand the injury

• Radial head fractures
 • Classification (Mason)
 • Treatment

• Radial neck fractures
 • Treatment

• Essex-Lopresti Injuries
 • Don’t miss!
References

References

- Ring D, Quintero J, Jupiter JB. Open reduction and internal fixation of fractures of the radial head. JBJS. 2002 Oct 1;84(10):1811-5.