Forearm Fractures

Sean T. Campbell, MD Assistant Attending Orthopedic Trauma Service Hospital for Special Surgery, New York, NY

Objectives

- Understand rationale for surgery for forearm fractures
- Understand which segment is unstable based on injury pattern
- Identify goals of surgery based on injury pattern
- Review surgical techniques

Introduction: Forearm Fractures

- Young patients
 - Typically high energy injuries
- Geriatric/osteopenic patients
 - May be low energy events
- Mechanism
 - Fall on outstretched extremity
 - Direct blunt trauma

<u>Anatomy</u>

- Two bones that function as a forearm joint to allow rotation
 - Radius
 - Radial bow in coronal plane
 - Ulna
 - Proximal dorsal angulation in sagittal plane
 - Not a straight bone
 - Distinct bow in coronal plane (see next slides)
 - Proximal radioulnar joint (PRUJ)
 - Articulation of radial head with proximal ulna
 - Distal radioulnar joint
 - Articulation of ulnar head with distal radius
 - Interosseous membrane

Hreha J+, Snow B+

Image from: Jarvie, Geoff C. MD, MHSc, FRCSC*; Kilb, Brett MD, MSc, BS*, †; Willing, Ryan PhD, BEng‡; King, Graham J. MD, MSc, FRCSC‡; Daneshvar, Parham MD, BS* Apparent Proximal Ulna Dorsal Angulation Variation Due to Ulnar Rotation, Journal of Orthopaedic Trauma: April 2019 - Volume 33 -Issue 4 - p e120-e123 doi: 10.1097/BOT.000000000001408

Anatomy

- Radial bow allows for pronosupination
 - Must be restored surgically when compromised
 - Multiple methods for assessment of radial bow
 - Comparison to contralateral images
 - Direct anatomic reduction of simple fractures
 - Biceps tuberosity 180 degrees of radial styloid
- Note opposite apex medial bow of ulna
 - Not a straight bone

Anatomy

 Depiction of ulnar shape, noting proximal ulnar dorsal angulation (PUDA) in the top image, and varus angulation in the bottom image

Image from: Jarvie, Geoff C. MD, MHSc, FRCSC*; Kilb, Brett MD, MSc, BS*,[†]; Willing, Ryan PhD, BEng[‡]; King, Graham J. MD, MSc, FRCSC[‡]; Daneshvar, Parham MD, BS* Apparent Proximal Ulna Dorsal Angulation Variation Due to Ulnar Rotation, Journal of Orthopaedic Trauma: April 2019 - Volume 33 -Issue 4 - p e120-e123 doi: 10.1097/BOT.000000000001408

Initial Presentation

- Antibiotics for open fractures
- Careful attention to
 neurovascular status
- Physical and radiographic exam of wrist and elbow joints
- Temporizing splint immobilization above the elbow
- High risk for compartment syndrome
 - Especially high energy mechanisms
 - Be familiar with technique for forearm compartment release: <u>OTA video library</u>

Surgical Indications

- Most fractures are operative in adults
 - Both bone fractures- inherently unstable
 - Loss of radial bow interferes with pronosupination
 - Single bone diaphyseal injuries
 - Often result in
 - PRUJ instability (Monteggia)
 - DRUJ instability (Galeazzi)
- Exceptions
 - Some nondisplaced single bone injuries (i.e. nightstick fracture of ulna)
 - With intact PRUJ/DRUJ
- Outcomes

Droll+

- In general good
- Moderate decrease in perceived strength*

Essex-Lopresti Injuries

- Radial head or neck fracture with DRUJ injury, and intraosseous membrane (IOM) injury
- Wrist exam and imaging mandatory for elbow fractures
- Some authors have described MRI exam of IOM
 - Not required to meet standard of care
- Treatment- surgical fixation or radial head arthroplasty
 - DRUJ stabilization as needed
 - Avoid radial head excision proximal migration of radius and ulnar positivity at the wrist
 - IOM reconstruction has been described, usually as salvage for chronic injury +
- Outcomes
 - Good, when injury detected and treated *

Surgical Goals for All Forearm Fractures

- Restoration of forearm anatomy
 - Length/alignment/rotation (L/A/R) + correct bow
- Stable and congruent elbow and wrist joints
 - Address fracture of sigmoid notch or radial head
- Robust fixation to allow early motion
 - Avoid thin/tubular plates
- Intelligent fixation based on fracture pattern
 - Simple patterns- anatomic reduction and compression
 - Comminuted patterns- restoration of L/A/R/bow with bridge plating

Positioning

- Supine, radiolucent hand table
 - Preferred: Most diaphyseal and distal fractures
 - Disadvantage: must flex (and hold flexed) elbow to approach ulna
 - Addressing radius first typically easier in this position
 - Gives stability to forearm for treatment of ulna in the elbow-flexed position
- Lateral with elbow flexed 90 degrees
 - Advantage: Complex proximal ulna fracture; transolecranon fracture-dislocation
 - Disadvantage: unfamiliar positioning for radius- may require repositioning
 - Indications:
 - Difficult/segmental proximal ulna fracture
 - Ipsilateral humerus fracture to be addressed with same anesthetic

Exposure

- Separate approach for each bone
- Radius Exposure
 - Volar Henry:
 - Brachioradialis/FCR interval
 - Radial artery is mobilized to ulnar side
 - Extensile distally and proximally
 - Trans-FCR approach: OTA video link
 - Dorsal/Thompson approach: OTA video link
 - Splits extensors to access radius
 - PIN at risk proximally
 - Extensile to radial head
- Ulnar exposure
 - ECU/FCU split: <u>OTA video library example</u>

Clinical photos demonstrating the volar approach to the radius.

Middle: Elevator is pointing at the superficial branch of the radial nerve.

Right: The fracture has been exposed (elevator at fracture line). The white structure just ulnar to the elevator is the pronator teres tendon. White arrow points to radial artery.

Ulnar Exposure

- ECU/FCU split
 - Be aware of ulnar bow
 - Ulna is not truly "subcutaneous" throughout full length
 - ECU/FCU interval may "cross" over border of the bone
 - Utilize correct interval to preserve muscle as possible
 - Extensile proximally into posterior approach to humerus
 - OTA video library example

Surgical Toolbox: Reduction of Diaphyseal BBFF

- Simple fractures
 - Traction via reduction forceps proximally and distally to restore length
 - Pointed reduction clamps for oblique fracture
 - Modified "straight-straight" clamps for transverse fractures
 - Most transverse fractures will be inherently stable once length restored
 - Lag simple fragments to simplify fracture
 - Ensures correct restoration of length and radial bow
- Complex fractures with comminution/bone loss
 - Contour straight plate for bowed bone; option precontoured ("anatomical") plate
 - Clamp to reduce bone to plate
 - Focus on L/A/R/Bow

Above, a 22 year old woman who fell from a skateboard with a closed injury

Surgical toolbox: Fixation of Diaphyseal BBFF

- Simple fractures
 - Lag screw/neutralization plating for obliquity fracture
 - Countersink volar 2.4mm lag screws if under plate
 - Dynamic compression plating for transverse fracture
 - Mini-fragment plate can be used for provisional reduction
 - Plate selection
 - 3.5mm LCDCP or similar on radius and ulna
 - 2.7 DCP in smaller patients on ulna
 - Avoid tubular or flexible plates
 - Slight prebend needed if compression plating
 - Comminuted/Segmental bone loss fractures
 - Long contoured plates with well balanced screw spread preferred
 - Full length films (flat plates) can be useful for assessing radial bow
 - Consider comparison views of contralateral side

Case Example: Both Bone Forearm Fracture

- Bridge plating due to comminution
 - Eccentric straight plate highlights restored radial bow

Galeazzi Fracture

- Distal 1/3 radial shaft fracture with potential DRUJ instability
- Requires surgery to restore forearm stability
 - Radius → ORIF
 - Then clinically and radiographically examine DRUJ after ORIF
- If DRUJ remains unstable → address

Above, a 61 year old man who had a car tire fall on his arm when his tire jack failed with a closed injury **Core Curriculum V5**

Surgical Toolbox: Galeazzi

- Preoperative examination of contralateral DRUJ
- Clinical exam after radius fixation to determine next steps
 - Restoration of radius length and bow often restores DRUJ stability
 - if unstable: TFCC repair, splinting in position of reduction/stability, pinning in position of reduction/stability (usually supination)
 - Typically dorsal instability, but volar instability possible
 - Author's protocol for DRUJ
 - If lax compared to contralateral, splint in stable position x2 weeks
 - If dislocating with pronosupination, pin in reduced position x4 weeks
 - In general, good outcomes if anatomy restored* *Giannoulis+

Core Curriculum V5

Monteggia Fracture

- Ulna shaft fracture with radial head dislocation (PRUJ instability)
- Classification system based on direction of dislocation (next slide - diagram of classification)
- Associated injuries:
 - LUCL injury, radial head fracture, coronoid fracture
- Outcomes

*Sreekumar+

- In general, good
- Poorer with Bado type II fractures (see next slide), associated radial head and coronoid fractures*

Monteggia Fracture

Classification of Monteggia Fractures

Bado Classification

Bado Type	Radial Head Dislocation	Ulnar Fracture	Radial Fracture
1	Anterior	Diaphysis with anterior angulation	-
П	Posterior or posterolateral	Diaphysis with posterior angulation	-
Ш	Lateral or anterolateral	Metaphysis	_
IV	Anterior	Same level as radial fracture	Proximal one-third

Jupiter Modification of Bado Type II

Modification	Location of Ulnar Fracture	
• IIA	Distal aspect of olecranon and coronoid process	
• IIB	Metadiaphyseal fracture not involving coronoid	
• IIC	Diaphyseal fractures	
• IID	Proximal one-third of ulna involving coronoid and olecranon with dislocation	

Reproduced from Rockwood and Green 9e, chapter 46

Surgical Toolbox: Monteggia

- Restoration of ulnar shape is the goal
 - Mal-reduced ulna = persistent radiocapitellar instability
- Surgical strategy for more complex injuries
 - Careful preoperative assessment of radial head, coronoid
 - Coronoid fragment and radial head fracture can be addressed in lateral position
 - Posterior exposure via fracture line or modified Boyd
 - Alternative separate lateral approach with elevated flaps through same posterior incision

Surgical Toolbox: Monteggia

- Sequence: radial head arthroplasty trial → provisional reduction of ulna→ assessment of radial head size → definitive radial head arthroplasty → re-reduction and definitive fixation ulna → assessment of lateral ligament complex (see next case example)
- Postop: typically splint for 1-2 weeks then early motion
 - If ligament repair required, avoid varus stress

Case Example: Monteggia

 Posterior monteggia fracture with posterior radial head dislocation and radial head fracture

Case Example: Monteggia

• In the top image, malreduction of the ulna results in persistent radiocapitellar subluxation

 In the bottom image, the reduction has been corrected and the radiocapitellar joint is reduced

Case Example: Monteggia

 In this case, there was persistent elbow instability which prompted an evaluation of the LUCL complex

- The LUCL was found to be injured
- Once repaired with a suture anchor, elbow stability was restored
- Patient was splinted x10 days, then started on a rehab protocol including early motion with varus elbow precautions to protect the LUCL repair

Trans-olecranon Fracture-dislocation

- Distinct from monteggia fracture- PRUJ is intact
- Distal humerus drives through proximal ulnar articular surface
- Often significant articular injury of the greater sigmoid notch
- Outcomes:
 - In general excellent
 - Poorer with radial head, coronoid fractures, and ligamentous injuries*

Case Example: Trans-olecranon Fx-dislocation

- Case example of young patient with a high energy, open trans-olecranon fracture
- There is articular injury, bone loss, and concern for ligamentous injury

Case Example: Trans-olecranon Fx-dislocation

- The articular surface is reduced directly
- Multiple plates are used to "cage in" the comminution
- Nonlocking screws are used in a stout plate to anchor the unstable distal segment
- The lateral ligamentous complex is repaired
- This particular patient had a head injury and was unable to follow a typically rehab protocol
 - Typically, the patient is placed in a splint for 10-14 days, following which early motion with varus elbow precautions is prescribed Core Curriculum V5

Surgical Toolbox: Trans-olecranon Fracture

- Reduce and work distal to proximal
- Anatomic reduction of articular injury
 - Free articular fragments provisionally wired
 - Dis-impaction of articular surface on intact segments may be required
 - Anticipate need for allograft/void filler
 - Retained threaded wires, mini-fragment implants can be useful
 - "Pilon of the elbow"
- Assess elbow radiographically at conclusion
 - Occasionally LUCL injury needs to be repaired

Peri-implant Fractures

- Can occur adjacent to existing implants
 - Often fracture is through peripheral existing screw hole
- Remove old implants
- Reduction can be challenging- be aware potential for pre-existing nonanatomic union
 - If fracture is through screw hole- restoration of screw hole shape, compared to adjacent, can be helpful
- Use a long implant spanning entire old zone of injury

Bone Loss

- May occur in conjunction with high energy open fractures, ballistic fractures
- If in radius- anticipate need for bending plate on the flat, or consider a precontoured plate as a reduction aid
- PMMA spacer and induced membrane technique viable option
- Consider stiff implant or two plates to last through duration of healing
- Bone transport- described, potentially useful depending on patient compliance and surgeon skillset

 This patient with a high energy open both bone fracture had both radial and ulnar bone loss

- Far left image demonstrates the degree of bone loss
- The ulna in particular is missing a segment after length is restored

 In this case PMMA cement was used to fill the void, with the intent to come back and bone graft the defect later

- Two plates were used on the ulna to strengthen the construct in anticipation of a long period prior to healing
- Again, note the eccentric plate placement on the radius- one sign that radial bow has been restored

Postop-protocols

- Variable depending on injury severity, soft tissue injury, and fracture pattern
- In general (author preference)
 - Diaphyseal fractures, DRUJ/PRUJ unaffected: immediate range of motion
 - Radius fx with DRUJ instability
 - After fixation, if DRUJ lax compared to contralateral, splint in stable position x2 weeks
 - If dislocating with pronosupination, pin in reduced position x4 weeks
 - Ulna fx with PRUJ instability
 - If elbow stable after fixing bony injury- immediate ROM
 - If lateral ligament repair required- splint x10 days, then varus elbow precautions and supine gravity assisted flexion/extension x6 weeks
 - If severe soft tissue injury
 - Consider splint x2 weeks for soft tissue rest

Summary: Forearm Fractures

- Typically operative injuries
 - "Fractures of necessity"
- May be associated with sequelae of high energy trauma
 - Compartment syndrome, open fractures, bone loss
- Restoration of length, alignment, rotation and correct shape is critical to forearm function
- Proximal fractures may have articular injuries to address
- Ensure the wrist and elbow joints are stable
- Different fracture patterns have different unstable segments
 - Anticipate the predicted failure mechanism and plan fixation to prevent it

References

- Small RF, Yaish AM. Radius and Ulnar Shaft Fractures. [Updated 2020 May 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557681/
- Hreha, Jeremy MD; Congiusta, Dominick V. MPH; Ahmed, Irfan H. MD; Vosbikian, Michael M. MD What Is the Normal Ulnar Bow in Adult Patients?, Clinical Orthopaedics and Related Research: January 2020 - Volume 478 - Issue 1 - p 136-141 doi: 10.1097/CORR.0000000000999
- Grassmann JP, Hakimi M, Gehrmann SV, Betsch M, Kröpil P, Wild M, Windolf J, Jungbluth P. The treatment of the acute Essex-Lopresti injury. Bone Joint J. 2014 Oct;96-B(10):1385-91. doi: 10.1302/0301-620X.96B10.33334. PMID: 25274926.
- Adams JE, Culp RW, Osterman AL. Interosseous membrane reconstruction for the Essex-Lopresti injury. J Hand Surg Am. 2010 Jan;35(1):129-36. doi: 10.1016/j.jhsa.2009.10.007. PMID: 20117315.
- Droll KP, Perna P, Potter J, Harniman E, Schemitsch EH, McKee MD. Outcomes following plate fixation of fractures of both bones of the forearm in adults. J Bone Joint Surg Am. 2007 Dec;89(12):2619-24. doi: 10.2106/JBJS.F.01065. PMID: 18056493.
- Snow, Brian J. MD*, ‡; Javidan, Pooya MD*; Itamura, John M. MD‡; Lee, Thay Q. PhD*, † The Effects of Varus or Valgus Malalignment of Proximal Ulnar Fractures on Forearm Rotation, Journal of Orthopaedic Trauma: March 2014 Volume 28 Issue 3 p 143-147. doi: 10.1097/BOT.0b013e31829f5ebc
- Giannoulis FS, Sotereanos DG. Galeazzi fractures and dislocations. Hand Clin. 2007 May;23(2):153-63, v. doi: 10.1016/j.hcl.2007.03.004. PMID: 17548007.
- Jarvie, Geoff C. MD, MHSc, FRCSC*; Kilb, Brett MD, MSc, BS*,[†]; Willing, Ryan PhD, BEng[‡]; King, Graham J. MD, MSc, FRCSC[‡]; Daneshvar, Parham MD, BS* Apparent Proximal Ulna Dorsal Angulation Variation Due to Ulnar Rotation, Journal of Orthopaedic Trauma: April 2019 - Volume 33 - Issue 4 - p e120-e123 doi: 10.1097/BOT.00000000001408
- Sreekumar R, Gray J, Kay P, Grennan DM. Methotrexate and post operative complications in patients with rheumatoid arthritis undergoing elective orthopaedic surgery--a ten year follow-up. Acta Orthop Belg. 2011 Dec;77(6):823-6. PMID: 22308630.
- Rehim SA, Maynard MA, Sebastin SJ, Chung KC. Monteggia fracture dislocations: a historical review. J Hand Surg Am. 2014 Jul;39(7):1384-94. doi: 10.1016/j.jhsa.2014.02.024. Epub 2014 May 3. PMID: 24792923; PMCID: PMC4266382.
- Haller JM, Hulet DA, Hannay W, Cardon J, Tashjian R, Beingessner D. Patient Outcomes After Transolecranon Fracture-Dislocation. J Am Acad Orthop Surg. 2021 Feb 1;29(3):109-115. doi: 10.5435/JAAOS-D-20-00254. PMID: 32433427.
- OTA video library. Exposures Upper/Fasciotomy: Planning. <u>https://otaonline.org/video-library/45036/procedures-and-techniques/multimedia/16776637/exposures-upper-fasciotomy-planning</u>
- OTA video library. Dorsal Thompson Approach to the Radius. <u>https://otaonline.org/video-library/45036/procedures-and-techniques/multimedia/17896823/dorsal-thompson-approach-to-the-radius</u>
- OTA video library. Exposures Upper/Distal Radius- Volar: Deep Dissection. <u>https://otaonline.org/video-library/45036/procedures-and-techniques/multimedia/16776529/exposures-upper-distal-radius-volar-deep</u>

Core Curriculum V5

OTA video library. Exposures Upper/Ulna: Planning. https://otaonline.org/video-library/45036/procedures-and-techniques/multimedia/16776569/exposures-upper-ulna-planning

