Radiographic evaluation of the Spine

Alex M. Buteera, MD
Associate Professor and Chief Consultant Orthopedic Surgeon
Rwanda Military and King Faisal Hospital, Kigali

Objectives of Radiographic Examinations

 Adjunct to history and physical examination in process of establishing diagnosis of spine injury.

Ascertain as definitively as possible whether there is a Spine injury

Define fully the nature of the Spine injury

Radiographic Examination

Radiographic Exam

Injury

Systematic Approach

Listen

Touch

Think

- Steps

Challenges of Radiographic Examination

Extremely sensitive but relatively non specific

Reveal abnormalities in 1/3 of asymptomatic patients

 Differentiating between abnormalities with clinical implications and effects of ageing or healing

Radiographic Examination

Studies that are routine- Lateral C-Spine

(Part of Trauma Series)

Or Equivalent (CT Scan with Sagittal recon)

Radiographic Examination

•If 1 Spine injury is detected

Do complete C, T, L and S of the Spine

10-20% non contiguous injury

Radiographic examination

- Presence of facial trauma- C-Spine radiographs
- Presence of face or neck abrasions from sit belts C-Spine radiographs
- Presence of lap belt contusion- T-L Spine radiographs
- Presence of calcaneal fractures- T-L/ L-Spine radiographs

Cervical Spine

Spine Examination

Injury Detection: Cervical Spine

Systematic

Upper Cervical

Lower Cervical

• Start with PLAIN LATERAL FILM 85% of injuries

Occipital Cervical junction injuries

Dislocations and Dissociation

Associated major trauma

Injury Detection is a challenge leading to missed diagnosis

CT scan is best option for these injuries.

Detecting O-C Junction injuries

- Harris Lines
 - Basiondental Interval (BDI)
 - Distance from basion to the tip of the dens
 - Basionposterior Axial Line Interval (BAI)
 - Distance from the basion to a line drawn on the posterior aspect of C2
- Harris Rule of 12
 - Both of these lines should be less than 12 mm

Detecting O-C Junction injuries

- Power's Ratio
 - Describes relationship between occiput and C1
 - Line drawn from
 - Basion to Posterior Aspects of the C1 Arch (BC)
 - Opisthion to Anterior Arch of C1 (OA)
 - Ratio of these lines should be less than 1 in normal patients
 - BC/OA < 1

Upper Cervical Instability

- Widened ADI
- Atlanto-dens Interval (ADI)
 - Horizontal distance between posterior border of anterior arch of C1 and the anterior border of the Dens
 - > 3.5 mm indicative of instability
- Posterior atlanto-dens interval (PADI)
 - Horizontal distance between posterior border of dens and the anterior border of the posterior arch of C1
 - Commonly evaluated as Space Available for the Cord
 - The AP diameter of the canal at this level

Upper Cervical: Open Mouth View: C1-C2

Normal C1-C2

Measuring Lateral Mass Overhang

CT scan- C- spine

C1-C2 (Odontoid fracture)

Defines the nature of spine injury better

Aids decision on management

C-arm Image post fixation

Cervical Spine: Lateral X-ray

Check the lines and soft tissues

- Anterior VB line
- Posterior VB line
- Spinolaminar line
- Posterior spinous line

- Spinous process gapping
- Facet joint apposition
- Intervertebral gaping
- Angulation
- Translation

Spinous process gapping

- Facet Joint Apposition
 - Normal facets should have overlap (green)
 - Subluxed or Dislocated facets no longer show this overlap (red)

Inter-vertebral gapping

Vertebral Angulation

Core Curriculum V5

Vertebral translation

Subtle signs of injury

- No obvious fracture/ dislocation
- Check retrophangeal or Prevertebral soft tissue swelling

Presence:--> + injury

Absence: may not rule out injury

Soft tissue swelling

Using:

• 6mm at C3 ---> 59% Sensitivity

• 22mm at C6 ---> 5% Sensitivity

Doesn't mean much if not there

C-Spine: Anteroposterior view

Spinous process deviation

Lateral translation

Coronal deformity

Cervicothoracic junction

- Complete lateral(Upper part of T1)
- Swimmers view
- CT Scan is better for transition zones

CT Scan as- Screening Modality

- CT with sagittal recon I
- Most sensitive for fracture detection
- Especially transition zones
 (C0-C1 and C7-T1)
- Difficult with X-rays
- Vascular injury

Michael Utz, Shadab Khan et al, Insights Imaging, 2014

MRI- best soft tissue definition

- Negative plain Films
- Negative CT Scan
- But Clinically Suspicious
- Check for:
 - Continuity of ligaments
 - Edema in soft tissues
 - Cord injury?

Safety: Contra-indications for MRI

Implanted devices that:

Subject to magnetically induced malfunction

Potentially harmful movement

MRI- best soft tissues definition

- Clinical suspicion
- Has neural deficit
 - Herniated disc
 - Cord injury

MRI- soft tissue definition

T1 sequences:

Excellent for surveying anatomy and caliber of spinal cord

T2 images with or without fat saturation:

 epidural fluid collection, ligamentous disruption, edema and herniated discs

'Clearing' the C-Spine

- Standardized Protocol
- No consensus

Clearing C-Spine

- Avoid missed injuries
- Identify patients without significant injuries
- Delay in diagnosis associated with worse outcome

Injury detection- Thoracic and Lumbar Spine

- Same principles
- Landmarks and lines: Lateral View
 - Posterior vertebral body line
 - Anterior vertebral body line
 - Inter-spinous Distance
 - Translation

Injury detection- T and L Spine

AP View:

- Spinous process to pedicles
 - Should be symmetric
- Interpedicular distance
 - May be widened in burst fractures
- Translation

CT Scan: T-L Spine

- More Common as initial study
- Indicated if plain x-ray is suspicious
- Best bony detail
- Request multiple planes and recon
- Axial alone can miss translation

Thoracic and lumbar injuries

What is normal angulation?

T-L Spine injuries

Height loss

Adjacent fracture

MRI- Best at soft tissues

- MRI Can be useful to detect injuries to soft tissues, such as the posterior ligamentous complex (PLC)
- Consists of
 - Supraspinous Ligament
 - Interspinous Ligament
 - Ligamentum Flavum
 - Facet Capsule

MRI- best for soft tissues

Assessing PLC using MRI

Continuity of the ligamentum flavum

Summary

- Radiographic imaging serves as an adjunct to history and physical examination in process of diagnosing traumatic spinal injuries
- Radiographic evaluation should be approached in a systematic manner
- The advent of advanced imaging systems has led to improved detection, understanding, and diagnosis of spine trauma ...
- But understanding the principles of these injuries on plain films remains critically important

