Pediatric Hip Fractures and Dislocations

John Junsuk Lee, MD MS
Associate Chief of Orthopedic Trauma
Good Samaritan Hospital, West Islip, NY
Disclaimer

• All clinical and radiographic images provided are used with permission of John Lee, MD and Chris Souder, MD, unless otherwise specified
Objectives

• Understand the anatomy and development of the pediatric proximal femur
• Recognize the fracture types (Delbet classification)
• Review the treatment options
• Identify complications
• Review pediatric hip dislocations
Pediatric Hip Fractures

- Rare
 - < 1% of all pediatric fractures

- Commonly a result of a high energy mechanism

- High complication rates and poor outcomes when compared to other pediatric fractures

- Poor outcomes can be due to severity of associated injuries
Pediatric Proximal Femur

Single Physis \rightarrow Epiphyseal Nucleus Develops \rightarrow Greater Trochanter Ossific Nucleus Develops

Maturity at 14 years for girls and 16 years for boys
Pediatric Proximal Femur

7 month old MRI

Cartilaginous Physis
Metaphysis
Ossific Nucleus
Pediatric Proximal Femur Development

• Femoral neck shaft angle
 • 150 (birth) → 145 degrees (1-3 yrs) → 130 degrees (maturity)

• Femoral anteversion
 • 30 degrees (birth) → 10 degrees (maturity)
Vascular Supply to Proximal Femur

Medial femoral circumflex artery (2) and its branches are primary perfusers of the femoral head: acetabular (4), posterior inferior (5), ascending (6), transverse (7).

Entire blood supply to proximal femoral epiphysis comes from **superior retinacular vessels (15)**, terminal branch of ascending (6), by 3 years of age.

Lateral femoral circumflex artery (3) supplies the greater trochanter, lateral proximal femoral physis, and anteromedial metaphysis. Contribution to femoral head blood supply diminishes by 3 years of age.
Pediatric Femoral Head Blood Supply Development

Birth to 4-6 months
Tri-arterial blood supply

4-6 months until Mature
Single vessel supply (ARA blocked by physis)

Mature
Tri-arterial blood supply

ARA = anterior retinacular artery; IRA = inferior retinacular artery; LFCA = lateral femoral circumflex artery; MFCA = medial femoral circumflex artery; SRA = superior retinacular artery
Classification—Delbet

Type I, transphyseal, without (A) or with (B) dislocation of the capital femoral epiphysis

Type II, transcervical

Type III, cervicotrochanteric

Type IV, intertrochanteric
Delbet Type 1

- Transphyseal
- < 10% of pediatric hip fractures
- Most commonly seen in young children
- Often diagnosed late in newborns/infants
 - Possible non accidental trauma
- Subtypes
 - 1A – no dislocation
 - 1B – dislocation of the epiphysis from acetabulum
Delbet Type 1

• Usually from severe trauma
• 50% with femoral head dislocation
• Associated injuries in > 60% of cases
 • Pelvic fractures most common associated injury
• High rate of AVN
 • 38% in type 1A
 • ~100% in type 1B
Delbet Type 1

- Often missed in newborns/infants
- Subtle radiographic findings easy to miss
Delbet Type 1

MRI may be more diagnostic
Delbet Type 2

- Transcervical
- Most common
 - ~50% of all pediatric FN fractures
- 70-80% present displaced
- High rates of complication
Delbet Type 2

- Usually displaced
- 28-50% AVN rate
 - Increased AVN with increased displacement
 - Initial displacement is the best predictor of AVN
 - Increased AVN in kids over 10 years of age
- 15% nonunion rate
Delbet Type 3

- Cervicotrechanteric (or basicervical)
- ~30% of pediatric hip fractures
- 18-25% AVN rate
 - Related to amount of displacement
- 20% malunion rate
- 10% nonunion rate
Delbet Type 4

• Peritrochanteric or Intertrochanteric
• 6-15% of pediatric hip fractures
• < 10% AVN rate
• Most favorable of all pediatric hip fractures
Treatment: Delbet 1

• < 2 years
 • Closed reduction + spica cast

• 2-9 years
 • Smooth pins + spica cast

• ≥ 10 years
 • Transphyseal screw fixation

• ORIF required for dislocated epiphysis using a direct anterior, posterior or surgical dislocation approach depending on direction of the dislocation
Treatment: Delbet 1B

11 year old male, football injury

Copyright Children’s Hospital of Philadelphia, Philadelphia, PA.

Sankar WN, Mehlman CT. The community orthopaedic trauma surgeon taking trauma call: pediatric femoral neck fracture pearls and pitfalls. J Ortho Trauma. 2019;33:S22-S26
Treatment: Delbet 2 and 3

- Nondisplaced in < 6 years old in spica cast
 - Consider supplemental fixation ≥ 2 years to prevent displacement in cast

- Acceptable reduction
 - < 5° angulation
 - < 2 mm cortical translation

- < 4 years
 - Smooth k wires + spica cast

- 4-9 years
 - Physeal sparing cannulated screws
 - *Strongly consider including a spica cast*

- ≥ 10 years
 - Transphyseal cannulated screws
Treatment: Delbet 2 and 3

- For unstable fracture patterns, consider fixed angle constructs

- ± needle or open capsular decompression
 - Possible decrease in rates of AVN
 - controversial but minimal morbidity

- ± single leg spica cast in those potentially non compliant/younger
Treatment: Delbet 2

Physeal sparing screw fixation
Treatment: Delbet 3

Fixed angle sliding hip screw with antirotational screw
Treatment: Delbet 4

• Most favorable outcomes of all pediatric hip fractures

• < 6 years
 • Non/minimally displaced, < 10 degree angulation
 • Closed reduction and spica cast
 • Consider pin fixation in ≥ 2 year olds to prevent displacement in cast

• > 6 years
 • Internal fixation for all nondisplaced and displaced fractures
 • Pediatric sliding hip screw or proximal femoral locking plate
 • < 10 years: physeal sparing should be considered
 • Adolescents get transphyseal fixation
Treatment: Delbet 4

One year out
Implications of Pediatric Hip Fractures

- Abnormal neck shaft angle
- Abnormal femoral neck version
- Decreased articulo-trochanteric distance
- Limb length discrepancy
Complications

• AVN
 • Type 1 (38%) > Type 2 (28%) > Type 3 (18%)
 > Type 4 (5%)

• Risk Factors: older age, initial displacement

• Modifiable Factors: quality of reduction
 • Possible benefit to capsular decompression
 • Equivocal association with timing of reduction

• May take 2 years to develop
 • Important to obtain periodic radiographs
Complications

• Nonunion
 • 6-12%
 • Most common in type 2 fractures
 • Least common in type 4
• Causes
 • Poor reduction
 • Distracted fractures
 • Inadequate fixation
 • Fracture orientation (higher Pauwel’s angle)
• May result in coxa vara or AVN
• Treatment with valgus osteotomy
Complications

- Coxa Vara (<120°)
 - 10-32% of cases
 - Causes
 - Malreduction
 - Delayed union or nonunion
 - Premature proximal femoral physeal closure with greater trochanter overgrowth
 - Casting alone
 - Less likely with rigid internal fixation

- Intertrochanteric osteotomy for persistent deformity
Complications

• Premature physeal closure
 • 28% occurrence
 • Limb length inequality
 • Typically does not require treatment in adolescents
 • Can be significant in young children
 • 2-3mm of growth per year
• Trochanteric overgrowth
 • Functional coxa vara
 • Disturbs natural hip mechanics

• Treatment is trochanteric apophysiodesis in children ≤ 8 years of age
Complications

• Delayed SCFE at 9 months
 • Causes
 • Implant irritation
 • Premature initiation of weight bearing
 • Coxa vara
 • Osteonecrosis
 • Delayed union or nonunion
Complications

• Femoral neck overgrowth
 • Average 6.2 mm in series of 30 patients
 • Younger (5.5 years vs 9.9 years)
 • Lower rate of osteonecrosis and better functional outcomes
Pediatric Hip Dislocations

• Very rare
• Force required to dislocate increases with age
 • Minor injury < 10 years old
 • High energy > 12 years old
• Mostly posterior dislocations
Pediatric Hip Dislocations

• Posterior dislocations
 • Hip flexion, adduction and internal rotation

• Anterior dislocations
 • Hip extension, abduction and external rotation

• Inferior dislocations
 • Hyperflexed or abducted
Pediatric Hip Dislocations

• Xrays prior to reduction attempt
• Urgent reduction within 6 hours
 • 20x increase in AVN rate with delay > 6 hours
• Gentle reduction
 • Iatrogenic epiphyseal separation possible
• Open reduction following failed closed reduction attempt
Pediatric Hip Dislocations

- Anatomical blocks to reduction
 - Osteocartilaginous fragments
 - Interposed labrum
 - Femoral head buttonhole through capsule
 - Torn ligamentum teres

- Open reduction if needed from direction of the dislocation
 - Surgical dislocation is safe as well
 - Direct visualization of the block
Pediatric Hip Dislocations

• XR/CT or MRI to confirm concentric reduction
 • Possible acetabulum fracture or intra-articular fragments or labrum
 • MRI helpful in identifying non-ossified bony fragments and labrum

• Post reduction protocol
 • < 8 years old or non compliant
 • Spica cast 3-4 weeks
 • Abduction splinting 3-4 weeks
 • Older, more compliant patients
 • Protected non weight bearing for 6 weeks

Pediatric Hip Dislocations

• Complications
 • AVN (8-20%)
 • Myositis ossificans (8-15%)
 • Sciatic nerve palsy
 • Early secondary arthritis

• Poor prognosticators
 • Older age
 • Severe trauma
 • Delay in reduction (> 6 hours)
 • Incongruous reduction
 • AVN
Summary

- Pediatric hip fractures and dislocations are rare
- Require high suspicion in infants and patients with concomitant injuries
- Aggressive early treatment leads to lower complication rate
- Initial AVN counseling and follow up needed until skeletal maturity
References

Ratliff AH. Fractures of the neck of the femur in children. JBJS Br 1962
Canale ST, Bourland WL. Fracture of the neck and intertrochanteric region of the femur in children. JBJS 1977
Mehlman CT, Hubbard GW, Crawford AH, Roy DR, Wall EJ. Traumatic hip dislocation in children: Longterm followup of 42 patients. CORR 2000
Podeszwa DA, De La Rocha A, Larson AN, Sucato DJ. Surgical Hip Dislocation is Safe and Effective Following Acute Traumatic Hip Instability in the Adolescent. JPO 2015
Riley PM Jr, Morscher MA, Gothard MD, Riley PM Sr. Earlier time to reduction did not reduce rates of femoral head osteonecrosis in pediatric hip fractures. JOT 2015
Kruppa CG, Sietsema DL, Khoriaty JD, Dudda M, Schildhauer TA, Jones CB. Acetabular fractures in children and adolescents: comparison of isolated acetabular fractures and acetabular fractures associated with pelvic ring injuries. JOT 2018
Patterson JT, Tangtithaphoontana J, Pandya NK. Management of pediatric femoral neck fracture. JAAOS 2018
Mehlman CT, Sankar WN. The community orthopaedic surgeon taking trauma call: pediatric femoral neck fracture pearls and pitfalls. JOT 2019
Althausen PL, Nielsen RC, Gurnea TP. Use of Proximal Humerus Locking Plates for Fixation of Pediatric Femoral Neck Fractures - Technical Trick. JOT 2020
Lark RK, Dial BL, Alman BA. Complications after pediatric hip fractures: evaluation and management. JAAOS 2020