Fractures of the Spine in Children

K. Aaron Shaw, DO
Dwight D. Eisenhower Army Medical Center
Objectives

• Review epidemiology of spine fractures in children
• Discuss cervical spine anatomy and injury patterns
• Review cervical spine precautions in children
• Identify cervical spine clearance protocol in children
• Discuss thoracolumbar spine anatomy and injury patterns
• Review treatment approaches for spine fracture
Key Differences in the Pediatric Patient

• Anatomical and Radiographic Differences
• Increased elasticity
• Larger Head-to-Body Ratio
• Physeal/Synchondrosis/Periosteal tube fracture patterns
• Surgery rarely indicated
• Immobilization well tolerated
Epidemiology

- Spine fractures are rare injuries
 - Potential for devastating complications
- Incidence
 - 93 – 107 per million
 - Annual incidence decreasing since 2000
- Injury Pattern
 - Varies based on patient age
 - <8 years → upper cervical spine injuries
 - Adolescence → thoracolumbar/Sacral fracture
Epidemiology

• Cervical Spine most common for age 0-4 years

Mendoza-Lattes et al. Iowa Orthop J. 2015; 35
Epidemiology

• Lumbar spine injuries more common for 5-20 years

Spine Injuries by Age

- Cervical
- Thoracic
- Lumbar

Mendoza-Lattes et al. *Iowa Orthop J.* 2015; 35
Epidemiology

• Motor vehicle accidents (MVAs) account for 52.9% of all injuries

• Cervical spine injuries are much more common in youngest patients
 • 0-3 years → ligamentous injury
 • 4-9 years → compression fracture

• 25% mortality rate in infants and toddlers

• Neurologic injury occurs in 15% of spine fractures
 • 50% of cervical fractures have neurologic injuries

Mendoza-Lattes et al. Iowa Orthop J. 2015; 35
Epidemiology

- **Mortality**
 - Rate of 2.5 – 3.7 per million
 - Mortality rate decreasing per annum
 - Piatt & Imperato. *J Neurosurg Pediatr*. 2018; 21

- Mortality rate related to level of injury and associated injuries
 - Highest mortality rate in upper cervical spine injuries in young children
Mechanism of Injury

• Non-accidental trauma responsible for up to 19% of spine fractures in infants and toddlers

• Sports-related trauma increasing in adolescent patients
 • Most common in cycling and contact sports
 • Gupta et al. *J Neurosurg Spine*. 2019
Noncontiguous Spinal Injuries (NCSI)

- Occurs in approximately 11.8% of cases
 - Most common is two noncontiguous thoracic spine
- 16% of NCSIs are initially missed
- Higher rates of neurologic injury than single level or contiguous injuries
 - 24% vs 9.7%
- Associated injuries found in 44% of cases
- Recommend imaging to include at least 4 spinal levels above and below

14 year old M with L2 and L5 burst fractures (Image courtesy of Josh Murphy, MD)
Pediatric C-spine Immobilization

- Requires unique consideration in the pediatric patients
 - Especially true for children < 8 years
- Children have disproportionately larger heads relative to the body
 - Produces a cervical flexion when on a flat surface

Anterior translation of C2 fracture in child placed on spine board. (R&W 8th ed. Image 23-6)
Appropriate Immobilization

• Aim: to align external auditory meatus with shoulders
• Requires either head cut-out or mattress to elevate torso

Proper positioning techniques for cervical spine immobilization in young children. (R&W 8th edition. Figure 23-14, page 854)
Cervical Spine Clearance

• Clearance protocol is distinctly different from adult protocol

• Pediatric Cervical Spine Clearance Working Group presented new clearance algorithm in 2019

• Approach based upon mental state at presentation, potential for recovery, and radiographic interpretation
 • Subgroups: 1) GSC 14 or 15 2) GSC 9-13 3) GSC ≤ 8

• Goals: (1) Reduce time to c-collar removal (2) Decrease radiation exposure

Pediatric Cervical Spine Clearance Working Group Algorithm

GCS = 14 or 15

- History*
 - Child or parent reports persistent neck pain, abnormal head posture, or difficulty with neck movement
 - History of focal sensory abnormality or motor deficit
- Physical Exam
 - Torticollis/abnormal head position
 - Posterior midline neck tenderness
 - Limited cervical range of motion
 - Not able to maintain focus due to other injuries
- Visible known substantial injury to chest, abdomen, or pelvis**

Answer "No" to all of the above

Clear c-spine

Options:
1) Clear c-spine if physical exam findings resolve
2) Obtain Flexion / Extension radiographs #*
3) Maintain collar and re-evaluate in 2 weeks
4) Spine consult

GCS = 9 - 13

Potential to improve mental status to a GCS of 14 or 15?

Yes

- Plain radiograph# (lateral view minimum)

No

- Repeat clinical exam within 12 hours

Abnormal

Repeat clinical exam

Normal

Anticipate that the patient will improve to GCS 14 / 15 within 72 hours

GCS ≤ 8
And reasonable suspicion for cervical spine injury

CT #

Abnormal

Normal

Patient has improved to a GCS of 14 or 15?

Yes

Clear c-spine

No

Repeat clinical exam

Abnormal

Normal

Spine consult

Spine consult

Glasgow Coma Score (GCS) of 14-15

• Physical Exam findings are sufficient for clearance
 • Cannot clear in the setting of:
 • Torticollis
 • Posterior MIDLINE tenderness
 • Difficulty with neck ROM
 • Distracting injury

• Positive exam finding confirms need for plain radiographs
MIDLINE tenderness with a normal exam?

• Treatment options
 • 1) Place in rigid collar for 1-2 weeks with follow-up repeat examination
 • 2) Lateral flexion/extension radiographs
 • To be cleared, radiographs must confirm:
 • > 30 deg flexion and extension for adequate assessment
 • No subluxation present
 • 3.) Obtain spine consult

Example radiographs demonstrating adequate flexion/extension views of cervical spine.
GCS 9-13

- Initial Work-up:
 - If expected mental status improvement → lateral cervical radiograph
 - If no improvement expected → CT scan
 - If lateral radiograph normal → repeat exam in 12 hours
 - If repeat exam is normal → c-spine can be cleared

- If suspected abusive head trauma, obtain cervical spine MRI

- Stronger consideration for imaging with higher risk mechanisms:
 - diving
 - axial loading
 - clothes-line
 - high-risk MVA
GCS ≤8

• Initial imaging study:
 • Computed Tomography (CT)
 • Obtain MRI if:
 • If initial CT scan is negative and no anticipated mental status improvement within 72 hours
 • If abusive head trauma suspected
 • MRI is sufficient to clear cervical spine

3-year old with complete SCI after C2 fracture sustained during an MVC
Cervical Spine Trauma

Lateral cervical spine radiograph demonstrating C2 Hangman’s fracture. (R&W 8th ed. Figure 23-48)
Cranio-cervical Junction

• Also referred to as the Atlanto-occipital (AO) junction

• Consists of the articulation between occipital condyle and C1 lateral masses
 • Additional ligamentous component includes the odontoid

• Articulation between C1 and occipital condyle is more horizontally oriented in young children
 • Coupled with a smaller occipital condyle increases vulnerability to injury

Sagittal CT image demonstrating normal occipital cervical articulation
C1 – Atlas

- Composed of 3 ossification centers
 - Neural arch (x2) and body
- Anterior arch ossification centers appears by 1 year of age
 - Present in 20% of children at birth
- Posterior arches (D) fuse by age 3
- Neurocentral synchondrosisis (F) fuses by age 7 years
- Ring reaches adult size by age 4 years
C2 — Axis

• Consists of 4 ossification centers
 • Dens (odontoid process), body, neural arch (x2)

• Synchondroses
 • Odontoid and Body (Subdental)
 • Fuses by age 7 years
 • Located below C1-C2 articulation
 • Neurocentral synchondrosis
 • Formed between neural arch, odontoid and body
 • Fuses at 3-6 years of age
 • Neural Arches
 • Form the posterior arch
 • Fuse at 3-6 years

Illustration of C2 ossification centers (R&W 8th ed Figure 23-9)
Os Odontoideum

• Corticated ossicle of the odontoid
 • Anatomical variant
• Located well above C1-C2 articulation
• Etiology is debatable
 • Sequelae of trauma vs congenital
• Can be associated with C1-2 instability
 • Management depends on symptomatology and instability

Coronal CT image demonstrating an os odontoideum (R&W 8th ed Figure 23-10)
Subaxial Cervical Spine

- 3 ossification centers
 - Vertebral body and Neural arch (x2)
- Neural arches fuse at 2-3 years
- Neurocentral synchondrosis fuses at 3-6 years
- Vertebral body: wedge-shaped until 7-8 years

Illustration of subaxial cervical ossification centers (R&W 8th ed. Figure 23-12)
Facet Orientation

• Undergo progressive change in orientation with age
• Initial horizontal orientation may increase susceptibility to injury
• C1 and C2 facet orientation
 • 55 degrees at birth → increases to 70 degrees at maturity
• Subaxial spine orientation
 • 30 degrees at birth → increases to 60-70 degrees at maturity

Sagittal CT images demonstrating cervical facet orientation measuring 30 deg in a 3 year old patient (A), and 45 degrees in a 10 year old patient.

Pesenti et al. J Bone Joint Surg Am. 2018; 100(9)
Cervical Spine Imaging

• Initial imaging depends on setting of evaluation
 • For trauma evaluation, follow protocol previously described

• Imaging options include:
 • 3 view plain radiographs
 • AP, lateral, open-mouth odontoid
 • Dynamic radiographs
 • Flexion and extension laterals
 • Computed tomography
 • Static and Dynamic
 • MRI

Open-mouth odontoid radiographs showing os odontoideum
(R&W 8th ed. Figure 23-33)
Radiographic Evaluation

• Key relationships to assess for the Craniocervical Junction
 • 1) Occipital condyle – C1 facet distance
 • Should measure < 5 mm, increased distance indicated atlanto-occipital injury

Lateral cervical spine radiographs showing atlanto-occipital dislocation with increased facet condylar distance (R&W 8th ed. Figure 23-25A)
Radiographic Evaluation

• Key relationships to assess for the Craniocervical Junction
 • 2) Foramen magnum relative to C1
 • Powers Ratio
 • Ratio of distances: BC/AO
 • (Basion-posterior arch)/(anterior arch-opisthion)
 • Normal = 0.7 – 1
 • > 1.0 is abnormal
Radiographic Evaluation

• Key relationships to assess for the Craniocervical Junction
 • 2) Foramen magnum relative to C1
 • Wackenheim line along clivus
 • 1) Position of odontoid tip relative to line
 • Proximal to line → basilar invagination
 • 2) angle between line and posterior vertebral body
 • <150 degrees suggests ventral cord compression

Illustration of upper cervical spine relationships (R&W 8th ed. Figure 23-2)
Radiographic Evaluation: C1

- Isolated single point ring fractures can occur with patent synchondrosis

- Key relationships:
 - Lateral mass displacement relative to C2
 - Combined displacement >7mm indicative of transverse ligament disruption
 - Results in C1-2 instability

Axial CT image of C1 demonstrating single point ring fracture with patent synchondrosis (R&W 8th ed. Figure 23-30A)

Heller et al. *J Spinal Disord.* 1993; 6(5)
Radiographic Evaluation: C1-2

• Most common measurements include:
 • 1) Atlanto-dens interval (ADI)
 • >4.5 mm indicates instability in children
 • Space available for cord (SAC)
 • <13 mm increases risk for spinal cord injury

Illustration of upper cervical spine relationships (R&W 8th ed. Figure 23-2)
Radiographic Evaluation: C2

- Children < 6 years: fractures commonly occur through synchondrosis
 - Can be difficult to visualize
- Older children: resemble more adult fracture characteristics
 - Transverse fracture at level of articular surfaces

Lateral cervical radiograph and sagittal CT image demonstrate C2 fracture through the synchondrosis (R&W 8th ed. Figure 23-32)
Pseudosubluxation of C2-3

- Apparent anterior translation of C2 on C3 on flexion views
 - Reduces with extension
- Translation < 3 mm
- **Line of Swischuk remains intact**
 - Line along anterior spinous process of C1 – C3
- True injury also presents with significant pre-vertebral swelling

Lateral cervical radiographs demonstrating pseudosubluxation of C2-3 (R&W 8 ed. Figure 23-4)
Radiographic Evaluation: Subaxial Spine

• Relationship of adjacent vertebral bodies relative to one another
 • Anterior and posterior vertebral body lines
 • Spinolaminar and spinous process lines
 • Identifies translational abnormalities
 • Loss of lordosis may be normal but no significant translation

Illustration demonstrating various vertebral relationships (R&W 8th ed. Figure 23-5)

Do Forget the Soft Tissues!

- Pediatric spinal fractures can be difficult to visualize
 - Soft tissue swelling can be an indicator of injury

- Retropharyngeal soft tissue space:
 - C2 \rightarrow < 6 mm
 - C6 \rightarrow < 14 mm

3 year old male with C2 fracture and increased retropharyngeal soft tissue swelling > 6 mm at C2
Spinal Cord Injury

• Rare in children
 • Improved prognosis compared to adults

• Incomplete injuries are 3x more common

• Mechanisms:
 • Child abuse
 • MVC
 • Association with forward-facing car seat in infants and toddlers
 • Breech delivery

3-year old with complete SCI after C2 fracture in MVC

Reilly CW. J Bone Joint Surg Am. 2007; 89(S1).
SCIWORA

Spinal Cord Injury Without Radiographic Abnormality

- Distraction injury that is unique to children
- Spinal column is more elastic than spinal cord
 - *Spinal column can elongate 2 inches without disruption whereas spinal cord ruptures with \(\frac{1}{4} \) inch elongation*
- Most common in upper cervical spine injuries and in children <8 years
 - 50% complete injuries
- Delayed onset of neurologic symptoms common in up to 52%
- **High Suspicion in GCS 3 w/ normal CT head**
 - *May be upper cervical spinal cord injury*

What About High-Dose Steroid Therapy?

• NASCIS trial excluded children < 13 years of age
• Current recommendation against use of high-dose steroid in adult SCI
• Initial NASCIS results were extrapolated to pediatric patients but there is no evidence to support improved neurologic outcome
• High rate of complication
 • Hyperglycemia
 • GI complications

Cervical Spine Treatment Options

• Varying based upon underlying injury and stability

• Options:
 • Cervical Orthosis
 • Halo Fixator
 • Posterior Arthrodesis

Halo vest immobilization for upper cervical spine fracture
Thoracolumbar Injuries

• Account for 1-2% of all pediatric fractures
• MVCs are most common mechanism
• Age difference in injury pattern
 • <8 years less likely to have thoracolumbar injuries
• Modes of failure:
 • Distraction → Chance type injuries
 • Compression → Compression fracture, burst fracture

Sagittal CT image of an L1 bony Chance fracture (R&W 9th ed. Figure 21-6)
Anatomy

• 3 primary ossification centers
 • Vertebral body, Neural arch (x2)

• 5 secondary ossification centers
 • Spinous process, transverse process (x2), superior and inferior endplates (ring apophyses)

• Additional rigidity of thoracic spine due to rib attachment

Radiographic Evaluation

- Biplanar radiographs
- CT useful to evaluating fracture displacement, spinal canal encroachment
 - Not recommended for initial screening
 - Must balance with radiation exposure risk
- MRI favored when neurologic deficit present or concern for ligamentous injury

Sagittal CT Image of 2 yo with L2-3 fracture dislocation with canal compromise
Injury Patterns

• Compression fracture
• Burst
• Flexion-distraction
• Fracture-dislocation
• Ring apophyseal fracture

Lateral radiographs demonstrating an L2 burst fracture (R&W 8th ed. Figure 24-10B)
Compression Fracture

- Most prevalent pediatric spinal fracture pattern
- Most commonly affect the thoracolumbar spine
- Low-energy mechanisms common
- Stability is maintained if posterior elements/ligamentous structures are intact
 - *Anterior height loss >50% should raise concern for posterior injury and MRI is recommended*

11 year old M with contiguous T4-5 compression fractures after motocross accident
Burst Fracture

- Axial compression mechanism
 - Involves anterior and middle column
- More common in older adolescents
- Retropulsion of bone can result in neurologic injury and/or dural tear
- Signs of Instability:
 - Posterior ligamentous complex involvement
 - 3 column injury
 - Focal Kyphosis
 - Retropulsion >50%
 - Lamina fracture
 - Facet subluxation

14 year old M with L2 and L5 burst fractures after a fall from 60 feet (Image courtesy of Josh Murphy, MD)
Flexion-Distraction

• Occur secondary to a flexion moment over a fulcrum (i.e. seat belt)

• Tension forces in the posterior elements
 • Failure of posterior elements is propagated anteriorly

• Injuries can be bony, ligamentous, or both

• *Concomitant intra-abdominal and head injuries occur in 40% of patients*

Flexion-distraction injury at T12-1 evident by spinous process widening and anterior fracture (R&W 9th ed Figure 21-15)
Flexion-Distraction Classification

Bony

Bony and ligamentous

Ligamentous

Lap Belt sign

• High association with intra-abdominal and lumbar spine injuries

• Warrants lumbar spine imaging

Fracture-Dislocation

• Extremely high-energy mechanism
• Often associated with neurologic injury
• Treatment requires reduction and stabilization
• Instrumentation principles:
 • 2 levels above and below
 • If age < 10 years with complete SCI → expect paralytic scoliosis and can consider longer fusion constructs

2 year old with L2-3 fracture dislocation from non-accidental trauma.
Ring Apophyseal Fractures

- Affects children most commonly 10 - 14 years
- Ring apophysis separates from the vertebral spongiosa layer, usually of Inferior apophysis
- Classic symptom: radicular pain following strenuous activity
- Fractures can spontaneously reduce and may be difficult to visualize
 - MRI recommended for suspected injuries
- In absence of neurologic symptoms, non-surgical intervention recommended
- Surgery recommended if cauda equina compression present

16 year old with L5 apophyseal fracture involving the inferior end plate
Ring Apophyseal Variant

• Normal variant anatomy can mimic acute fracture
• Vertebral Body Shape
 • Vertebral body progresses from convex to concave morphology
• Apophyseal Ring ossification
 • Apophyseal appears between 6-13 years and ossifies at the end of growth
 • Ossification can mimic an apophyseal fracture

Akhaddar A et al. *J Neurosurg Spine.* 2011; 14(4)
Thoracolumbar Injuries

Treatment options

• Non-surgical:
 • Observation
 • Orthotic/Casting

• Operative treatment:
 • Decompression
 • Instrumentation
 (with or without arthrodesis)

• How do we decide when to operate?

AP radiograph after L2 corpectomy with anterior reconstruction and lateral instrumented fusion. (R&W 9th ed. Figure 21-14E)
Thoracolumbar Injury Classification and Severity (TLICS) Score

- Classifies injuries on three characteristics:
 - Fracture morphology
 - Integrity of the posterior ligamentous complex
 - Neurologic status
- Injuries are given a numeric score 1-10
- Treatment recommendation is determined by score
 - Score $\leq 3 \rightarrow$ Non-surgical treatment
 - Score $\geq 5 \rightarrow$ Operative treatment

TLICS in Pediatric Patients?

• TLICS is applicable in pediatric spine trauma

• High inter-rater reliability and sensitivity

• High levels of agreement between treatment recommendation based on TLICS scores and actual treatment provided

Take Home Points

• Cervical spine immobilization requires particular attention in younger children < 8 years
• Age and mechanism of injury influence spine injury patterns
• Proper knowledge of ossification patterns will aid in fracture recognition
• Treatment differs by age and injury location/pattern
• TLICS classification can be used to guide treatment in pediatric patients
References

References

Figures Used with Permission from:

