Patella Fractures
and
Extensor Mechanism Injuries

Paul S. Whiting MD
Director of Orthopaedic Trauma Research
Assistant Professor – University of Wisconsin
Overview & Objectives

• Epidemiology & Mechanism of Injury
• Anatomy & Biomechanics
• Diagnosis & Classification
• Non-Operative Treatment
• Operative Treatment
 • Patella Fractures: Simple & Complex
 • Quad/Patella Tendon Injuries
• Complications
• Summary/Key Points
Illustrative Cases Throughout This Lecture
Epidemiology & Mechanism of Injury

• Patella Fractures:
 • ~1% of all fractures

• Mechanism of Injury:
 • Direct impact (fall, dashboard)
 • Indirect (forceful quadriceps contraction)
 • Frequent cause of patella tendon/quad tendon ruptures
 • Combined (impact + quad contraction)
Anatomy – Blood Supply

• Geniculate arteries (branches of popliteal artery)
 • Lateral Superior (LS)
 • Medial Superior (MS)
 • Lateral Inferior (LI)
 • Medial Inferior (MI)
 • Supreme (S)
 (branch of SFA)
 • Anterior Tibial Recurrent (ATR)
 (branch of anterior tib)

• Robust blood supply:
 • Even in setting of fracture, most fragments retain blood supply
Anatomy – Articular Facets

• Medial Facet:
 • Separated from lateral facet by vertical ridge
 • Usually concave, but can be convex

• Odd Facet:
 • Medial border of the patellar articular surface
 • Only contacts femur in flexion >45 degrees

• Lateral Facet:
 • Largest facet (typically)
 • Concave

Image Source: Misir et al. Fracture Patterns and Comminution Zones in OTA/AO 34C Type Patellar Fractures. J Orthop Trauma 2020 May;34(5). E159-e164. Fig. 1.
Anatomy – Bipartite Patella

• Normal anatomic variant
• Secondary ossification center fails to fuse to primary ossification center
• Often *mistaken* for an acute fracture
• Most commonly superolateral
• Smooth, well-corticated edges
• Bilateral in ~50% of patients

Image Source: Rockwood and Green’s Fractures in Adults, 9th Edition, Fig. 59-2.
Anatomy – Articular Cartilage

• Undersurface of Patella:
 • Covered with thick articular cartilage
 • Up to 1cm thick

• Distal pole:
 • Devoid of cartilage
 • As a result, most distal pole fractures are extra-articular injuries
Biomechanics

- Extensor mechanism critical for:
 - Maintaining upright posture
 - Generating torque for knee extension
- Patella serves to *displace* the quad tendon away from knee’s center of rotation:
 - Increases quad tendon’s moment arm
 - ↑ Mechanical advantage up to 50%
- Significant tensile forces generated
 - Up to 6,000 N (~8x body weight)
Biomechanics

• Patella Experiences 3-Point Bending forces in knee flexion
 • Where articular cartilage is thickest

• Patello-Femoral Contact Forces:
 • Greater than any other joint
 • Up to 7x body weight
 • Highest during squatting, ascending and descending stairs
Diagnosis – Physical Exam

• All Extensor Mechanism Injuries:
 • Hemarthrosis/Effusion
 • Inability to perform straight leg raise
 * If retinaculum intact, pt may be able to SLR

• Patella fractures:
 • Palpable defect between fracture fragments

• Quad Tendon/Patella Tendon Injury:
 • Palpable defect:
 • Proximal to patella (quad tendon injury)
 • Distal to patella (patella tendon injury)
Diagnosis – Patella Fractures

• X-rays (AP/Lateral)
 • Typically sufficient to confirm diagnosis
 • Lateral view:
 • degree of displacement
 • AP view:
 • fracture obliquity & degree of comminution
• Sunrise view:
 • Additional fracture characteristics
Diagnosis – Patella Fractures

• Advanced imaging:
 • CT Scan
 • In comminuted fractures, helpful for pre-op planning
 • Improved understanding of fracture pattern:
 • # of fragments
 • Fracture orientation
 • Articular impaction/step-off
 • MRI
 • Rarely needed for isolated patella fractures
 • Useful if concomitant knee ligament injury suspected
Diagnosis – Quad/Patellar Tendon Injuries

- **X-ray: Lateral view**
 - In 90 flexion, superior pole normally rests *posterior* to the anterior femoral line
 - With patella tendon injury, patella rests *anterior* to the anterior femoral line

Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-3.
Diagnosis – Quad/Patellar Tendon Injuries

• X-ray: Lateral view
 • Insall-Salvati Ratio:

\[
\frac{\text{Length of patella tendon (b)}}{\text{Length of patella (a)}}
\]

• >1.2 = patella tendon tear (patella alta)
• < 0.8 = quad tendon tear (patella baja)

• Example:

\[
\text{Patella tendon length} = 67\text{mm} \quad \text{Patella length} = 45\text{mm}
\]

\[
\text{Ratio} = 1.49 \quad \text{(patella alta)}
\]

Image Source: Rockwood and Green’s Fractures in Adults, 9th Edition, Fig. 59-3.
Diagnosis – Quad/Patellar Tendon Injuries

• X-ray: AP view

 • Normal Patella position:
 • Inferior pole within 2cm of the plane formed by distal femoral condyles

 • Patella alta:
 • Concern for patella tendon injury

 • Patella baja
 • Concern for quadriceps tendon injury

Image Source: Rockwood and Green’s Fractures in Adults, 9th Edition, Fig. 59-3.
Diagnosis – Quad/Patellar Tendon Injuries

• MRI:
 • Confirms physical exam and X-ray findings in quad/patella tendon injury
 • *Disruption* of quadriceps (or patellar tendon)
 • *Laxity or redundancy* of the opposite side of the extensor mechanism
Classification

• Descriptive Classification
 • Displaced vs. Undisplaced
 • If *displaced*, need to describe...
 • Primary Fracture Line (Transverse vs. Vertical)
 • Location (midportion vs. superior or inferior pole)
 • Degree of comminution

• AO/OTA Classification rarely used

Image Source: Rockwood and Green’s Fractures in Adults, 9th Edition, Fig. 59-4.
Non-Operative Treatment

- Patients medically unfit for surgery
- Non-displaced fractures
- “Minimally displaced” fractures with intact extensor mechanism
 - No clear consensus on “acceptable” amount of displacement
 - Depends in part on patient’s
 activity level
- Pre-existing arthritis:
 - Favors non-operative treatment
Non-Operative Treatment

• 63 yo M – Fall from standing – Closed Fx – Intact Extensor Mechanism

Injury Films showing 3mm articular gap
- WBAT, hinged knee brace
- Locked in full extension

6-week F/U X-rays
- Allowed Active Flexion,
 Passive Extension 0-60°
- Progress 10° per week

12-week F/U X-rays
- Allowed Unrestricted
 ROM/strengthening
Non-Operative Treatment – Example # 2

- 80 yo M – Fall from standing – Intact Ext. Mechanism – Bad arthritis

Injury Films – some articular incongruity
- WBAT, hinged knee brace
- Locked in full extension

2-week F/U
- No interval displacement

6-week F/U X-rays
- Allowed Active Flexion, Passive Extension 0-60°
- Progress 10° per week

12-week F/U X-rays
- Allowed Unrestricted ROM/strengthening
Operative Treatment – Many Options!

• Most described techniques are for simple fractures:
 • Transverse
 • Non-comminuted
 • Good bone quality

• Simple Fracture patterns best illustrate key concepts:
 • Resisting tensile forces
 • Interfragmentary compression

Image Source: Rockwood and Green’s Fractures in Adults, 9th Edition, Fig. 59-6.
Operative Treatment – Transverse Fractures

• Tension Band Wire (TBW) – Concept:
 • Converting *tensile* forces (extensor mechanism) into *compressive* forces (at the fracture site)

Used with permission. Image Source: http://surgeryreference.aofoundation.org
Operative Treatment – Transverse Fractures

• Tension Band Wire (TBW) – Concept:
 • Controversial Theory
 • Several Biomechanical Studies refuting this theory
Operative Treatment – Transverse Fractures

• Tension Band Wire (TBW) – Concept:
 • Controversial Theory
 • Several Biomechanical Studies refuting this theory

Conclusions: Tension band wiring fulfills from a biomechanical perspective the requirements for sufficient stability of transverse patella fracture fixation. It should, however, rather be considered as a static fixation principle than a dynamic one. Tension band wiring with cannulated screws was found advantageous over Kirschner wires in terms of interfragmentary movements at the posterior fracture site.
Operative Treatment – Transverse Fractures

• Tension Band Wire (TBW): **Alternative approach:**
 • Achieve compression *intra*-operatively with cannulated screws
 • Utilize SS wire or non-absorbable suture to *augment* fixation
 • Wire/Suture acts in “Neutralization” Mode
 • Wire or suture can be cut by prominent screw tips
 • Prominent screws *also* compromise biomechanical stability of screw/TBW constructs (cadaveric study)
 - Increased fracture gapping during cyclic loading

Avery et al. *CORR* 2019

Make sure screw tips are buried

Courtesy of OTA archives
Case Example: 42yo F, fall while running uphill

• Healthy, active, high-intensity athlete
Transverse Patella Fracture

• **Pre-operative Plan**

 • Reduction Technique(s)
 • examples will be illustrated

 • Implant Choice
 • Traditional TBW?
 • Cannulated screws?

 • “Tension Band” Material
 • 18-gauge wire vs. suture?

 • Soft Tissue Augmentation
 • When is it needed?
Reduction Techniques

- Large pointed reduction clamps ("Weber clamps")
 - Generating compression
 - Best to use two clamps
- One K-wire in each fragment
 - Use these as "joysticks"
 - Helps fine-tune reduction rotationally and in the sagittal plane
Reduction Techniques – Rotational Views

Key Point: Multiple lateral views (int/ext rotation) are **critical** to assess accurate articular reduction.
Implant Placement

- Place K-wires as posterior as possible
 - Closer to articular surface
 - Biomechanically superior

- If using traditional TWB:
 - Provides a more balanced tension band construct

- If using cannulated screws:
 - Improved compression of articular surface
Implant Choice:

Traditional TBW vs. Cannulated Screws?

Either is fine for *simple* fractures

Image Source: Smith ST et al. Early Complications in the Operative Treatment of Patellar Fractures, *J Orthop Trauma.* 1997 Apr;11(3):183-7. Fig. 1D.
Implant Choice:

• Traditional Tension Band Wire
 • Advantages:
 • Low-cost
 • Simple, time-tested
 • Disadvantages:
 • Does not generate compression at Fx site
 • Hardware prominence VERY common
 • Implant removal in **up to 38% of cases**

Gosal et al. Injury, 2001
Implant Choice:

- Cannulated Screws
 - Advantages:
 - Generates compression at Fx site
 - Higher load to failure than:
 - TWB construct with K-wires
 - Screw fixation alone

Image Source: Carpenter JE, et al. Biomechanical evaluation of current patella fracture fixation techniques. *J Orthop Trauma* 1997;11(July(5)):351–60. Fig. 1.
OTA Video Library Link:
Implant Choice:

• Cannulated Screws
 • Disadvantages:
 • Higher cost
 • Challenge: passing wire/suture through screw
 • No standard screw size recommendation:
 • 4.5 mm
 • 4.0 mm
 • 3.5 mm
 • Pros/Cons of each size
 • Key advantage of 4.5 mm screws:
 • Ability to use commonly available suture passer
 • Easier than Keith Needles
Implant Choice:

- Cannulated Screws
 - Disadvantages:
 - Dependent on bone quality
 - Hardware prominence may be similar if SS wire is used for the tension band
 - Wire knots still present

Image Source: Smith et al. JOI 1997. Fig 1D.

Image Source: Carpenter et al. JOI 1997. Fig. 1.
Implant Choice:

• If using cannulated screws...
• What to use for the tension band?
 • Suture vs. SS wire?

Busel et al. *Injury*, 2020
Implant Choice:

- If using suture for the tension-band
 - Heavy, non-absorbable
- Figure-of-Eight passed through cannulated screws
- Supplemental Cerclage
 - Running, Locking

- Case series of 50 patients
 - 96% rate of union
 - 8% rate of hardware removal

Buesl et al. *Injury*, 2020
Post-Op Rehabilitation

- No clear consensus
 - Often locked in extension ‘til wound heals
- When ROM is allowed...
 - Begin w/ *active* flexion/*passive* extension
 - Progressive range (hinged brace useful)
 - Start with a defined ROM limit
 - May use intra-operative fluoroscopic stress view to determine safe ROM range for rehab
 - Can progress each week

Lateral Fluoro View:
Anti-gravity flexion
Post-Op Rehabilitation

• Post-Op Rehab example...
 • Begin active flexion/passive extension
 • Start 0-60 degrees at 6 wks post-op
 • Progress 10 degrees/wk from 6-12 wks
 • Active extension/strengthening at 12 wks

Lateral Fluoro View:
Anti-gravity flexion
Complex Patella Fractures – Operative Treatment

• Big Picture:

 • If possible...
 try to convert *comminuted* fractures into *simple* fractures

 • If not possible...
 consider *alternative* fixation strategies

OTA Video Library Link
Video

OTA Video Library Link:

• https://otaonline.org/video-library/45037/annual-meeting-and-conferences/multimedia/16845974/comminuted-patella-fractures
Complex Case Example

- 57 yo F, fall from standing
- Baseline ambulatory status: normal (independent)
Comminuted Inferior Pole Fractures

• Treatment options:
 • Non-operative?
 • Partial patellectomy?
 • ORIF?
 • Reduction Technique(s)?
 • Implant Options?
 • “Tension Band” Material?
 • Soft Tissue Augmentation?
Comminuted Inferior Pole Fractures

Reconstructing the inferior pole: preserves articular congruity

Next Step: How to secure reconstructed inferior pole to intact superior pole?
Comminuted Inferior Pole Fractures

• Bony healing:
 • More reliable than soft tissue healing
 • Use this to your advantage if possible

• Limited real estate
 • Maximize bony stability, but...
 • Augment w/ soft tissue repair techniques
Comminuted Inferior Pole Fractures

- Incorporate patella tendon into repair
 - Running, locking stitch
 - Sutures passed through bony tunnels
 - Tied over bony bridge (superior patella)
Follow-Up:

- ROM: 0-130°
- No pain
- Back to baseline function
Complex Case:

- 35 yo M, fall while running down a hill
- Otherwise healthy
Mesh Plates

- Comminuted Fracture Patterns
- Containment of Small Fracture Fragments
- Customizable
- “Fragment-Specific” Fixation

Video

OTA Video Library Link:
Quadriceps & Patella Tendon Repair

• Similar Operative Technique for both
 • Approach:
 • Midline anterior incision
 • Elevate full thickness flaps
 • Identify medial & lateral extent of retinacular tears
 • Repair during closure
 • Debride tendon stump
 • Prepare bony surface
 • Burr or curettes
 • Stimulates tendon-to-bone healing

Quadriceps & Patella Tendon Repair

- Drill bone tunnels
 - 3 (or more) parallel tunnels
- Suture:
 - Heavy (#2 or #5)
 - Non-absorbable
- Running locking technique
 - Enter tendon from end
 - Up & back medially
 - Up & back laterally
 - 4 strands total

Used with permission. Image Source: Ilan et al. JAAOS 2003, Fig. 3.
Quadriceps & Patella Tendon Tears

- Pass sutures through bone tunnels
 - Keith needle
 - Suture passer
- Tie sutures down over bony bridge b/w holes
 - 3 holes = 2 knots
 - Augment if needed
 - Cerclage through tibial tubercle
 - Circumferential purse-string suture

Used with permission. Image Source: Ilan et al. JAAOS 2003. Fig. 3.

Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-9.
Special Considerations: Patella Tendon Injuries

• Tiny inferior pole fractures:
 • Usually non-articular
 • Often too small to fix

• Preferred Treatment:
 • Fragment excision with patella tendon advancement (essentially converting this to a patella tendon repair)
Video

Video Link:
Special Considerations: Patella Tendon Injuries

- Inferior pole fragment excision w/ patella tendon advancement:
 - Make sure to attach tendon *closer* to anterior cortex
 - Better reproduces normal anatomy
 - Posterior attachment causes patellar rotation/maltracking
Quadriceps & Patella Tendon Tears

• Summary:
 • Prepare tendon & bone
 • Parallel drill tunnels
 • Heavy non-absorbable suture
 • Running-locking suture
 • Sutures through drill tunnels
 • Tie over bony bridge
 • Retinacular repair
 • Augment if needed using cerclage/purse-string
 • Alternative: suture anchors
Complications - Common

- Hardware prominence/pain
 - VERY common (up to 60%)
 - Often require reoperation for hardware removal
- Implant-dependent:
 - Highest rates with traditional Tension Band Wire construct (using 18G stainless steel wire)
 - Lower rate (8%) with cannulated screws + suture tension band

Buse et al. Injury, 2020
Complications – Less Common

• Extensor mechanism weakness
 • Common, but often very minor
 • 2-4cm loss of terminal extension
 • Extreme: total patellectomy:
 • 49% loss of quadriceps strength

• Knee stiffness
 • Typically can be prevented by early ROM
 • If unable to reach 90° of flexion by ~8wks, consider intervention:
 • Closed manipulation under anesthesia
 • +/- arthroscopic lysis of adhesions
 • Quadriceps-plasty in extreme cases.
Complications - Uncommon

• Infection/wound complications
 • <5% in most series
 • Up to 11% in open fractures

• Non-union
 • < 1% in most series
 • Up to 7% in open fractures

• Post-traumatic patello-femoral arthritis
 • Higher with partial patellectomy than with ORIF
Complications - Uncommon

• In rare cases, total patellectomy may be required:
 • Highly comminuted fractures
 • Severe infection or tumor
 • Failed internal fixation
 • Post-traumatic arthritis

• VMO advancement technique
 • Improved strength & functional outcomes vs. std patellectomy
Complications - Uncommon

• Re-fracture
• Re-rupture
• Loss of reduction/failure of fixation
 • Reported range of 0-20% in literature
 • Risk Factors:
 • Severe comminution
 • Osteopenia/Osteoporosis
 • Inadequate fixation
 • Overly aggressive physical therapy
 • Patient non-compliance
 • Illustrative case next...
88 yo F – s/p patella ORIF 6 wks ago
Injury Films (from outside hospital)

On today’s X-rays, the inferior pole fracture is healing well
88 yo F, 6 wks s/p failed patella ORIF

- Treatment Plan?
 - Fracture Reduction
 - (Nonunion preparation)
 - Implant Options?
 - How to generate compression?
- Soft Tissue Augmentation?
 - How? What materials?
- Bone Grafting?
 - If so, what type?
Fluoro Images

Key Point: With clamps compressing *posteriorly*, plates can compress *anteriorly*
Key Point: Revision fixation with poor bone quality: augment as much as possible!
Post-Op Images

Rehab Protocol:
- Post-op WB status?
- Brace? What kind?
- ROM? If so, what range?
Follow-up: 2 & 6 wks

• 2 wks:
 • Sutures out
 • X-rays (to ensure no unexpected early failure of fixation)

• 6 wks:
 • Fracture healing
 • Started active flexion/ passive extension
Follow-Up:

• ROM:
 • 3 mo: 0-94°
 • 6 mo: 0-110°
 • Back to baseline function
Failed Fixation: Take Home Points

• Construct *stability* is the priority
 • Revision, poor bone quality

• Generating compression:
 • Anterior plates (alternative: mesh plate)
 • Screws

• Soft Tissue Augmentation
 • Figure-of-eight: suture + tension-band wire
 • Purse-string suture

• Rehab Protocol:
 • Conservative in setting of revision
Overview & Objectives

✓ Epidemiology & Mechanism of Injury
✓ Anatomy & Biomechanics
✓ Diagnosis & Classification
✓ Non-Operative Treatment
✓ Operative Treatment
 ✓ Patella Fractures: Simple & Complex
 ✓ Quad/Patella Tendon Injuries
✓ Complications
✓ Summary/Key Points
Summary – Patella/Extensor Mechanism Injuries

• *Most* require operative treatment
• Significant *tensile* forces – must be overcome by fixation construct
• Simple transverse fractures – surgeon preference
 • traditional TWB or cannulated screws can provide reliable outcomes
• Complex fractures – maximize bony stability, augment w/ soft tissue
• Quadriceps & Patella Tendon Injuries – drill tunnels/suture repair
• Revision fixation – Generate compression, combine fixation methods
 • Augment w/ soft tissues & use conservative rehab protocol
• Complications – Symptomatic hardware most common (up to 60%)
 • Implant-dependent
References

- Bui, Christopher N. MD; Learned, James R. MD; Scolaro, John A. MD, MA, Treatment of Patellar Fractures and Injuries to the Extensor Mechanism of the Knee, JBJS Reviews: October 2018 - Volume 6 - Issue 10 - p e1.

