Tibial Shaft Fractures

Stephen M Quinnan, MD

Director Orthopaedic Trauma

St. Mary's Medical Center/ Paley Orthopedic & Spine Institute

&

Erika L. Garbrecht, MD

University of Miami/ Jackson Memorial Ryder Trauma Center

Any pictures not specifically referenced are from authors' personal file

Core Curriculum V5

Objectives:

- Describe the epidemiology and evaluation of tibia shaft fractures
- Compare treatment options
- Discuss outcomes and complications

Epidemiology

- Most common long bone fracture Lang GJ. OKU Trauma 2000.
- High incidence open fxs
 - 12-47% open fxs (institution dependent)
 - Subcutaneous location of bone Boulton CLRockwood and Green's Fractures 2020
- Bimodal distribution
 - Young (<30 y.o.) high-energy transverse and comminuted fxs
 - Older (>50 y.o.) low-energy spiral fxs
- Vehicular trauma most common cause of high-energy fxs
 - Pedestrian struck by vehicle>motorcycle crash>motor vehicle crash

Evaluation

- History and Physical exam
- Radiographs
- Possible CT scan and/or Vascular studies

Evaluation – History

- History
 - Mechanism of injury 2 High vs low energy
 - Isolated injury vs polytrauma
 - Patient demographics + PMH
 - Age/DM/Smoking/Substance abuse/Obesity/Immune Comprise

Evaluation – Physical Exam

- Open versus closed
- Pain? Compartment syndrome
- Soft tissue injury
- Vascular exam
- Neurologic exam (motor and sensory)

Evaluation - Radiographs

- Trauma bay XRs
 - Quick tool to identify fxs, but usually poor quality
 - True orthogonal XRs of tibia/fibula optimal for evaluation
- Ankle and knee XRs
- Periarticular extension, especially distal tibia shaft
 - Distal fibula fxs
 - Syndesmotic ankle and proximal tibiofibular joint injuries

Core Curriculum V5

Evaluation: CT scan

- Evaluate for adjacent articular fx
- 8-9% have associated posterior malleolar fx
 - 25-39% with distal 1/3 spiral fxs Boulton CL, Rockwood and Green's 2019
 - Recommend CT scan for all distal 1/3 tibia fx
- Proximal 1/3 extension to plateau less common
- Articular fx must be part of surgical plan

Boulton CL, Rockwood and Green's 2019

Evaluation : Vascular

- Indicated if distal perfusion remains abnormal (asymmetrical) despite fracture realignment
 - Handheld Doppler
 - ABIs
 - CTA
 - Vascular consult
 - Angiogram

Angiogram showing arterial injury at the level of fracture Core Curriculum V5

Evaluation: Compartment Syndrome

- More common with higher energy mechanism of injuries
- CLINICAL DIAGNOSIS in an awake patient
 - Pain out of proportion
 - Pallor
 - Paresthesia
 - Pulselessness (late finding)
 - Paralysis (late finding)
- Intubated/Obtunded diagnosis confirmed with compartment measures
- Compartment measures confirmatory in awake patient
- See Lecture General Part B3

Evaluation: Associated Injuries

- Ankle Injuries
- Floating knee
- Ligamentous injury of the knee
- Proximal Tibiofibular Joint Dislocation

Radiograph with left tibia shaft fracture with retained ankle hardware, tibial plateau fracture, knee ligamentous injury and proximal tibiofibular disruption

Core Curriculum V5

Classification

- AO/OTA Classification
 - Based on fracture morphology
 - A, B, C clinically useful
 - A=Simple
 - B= Wedge
 - C= Complex/Comminuted,
 - Full detail primarily for research
 - No soft tissue injury assessment

Core Curriculum V5

A2

3. Extensive shattering (>4 cr

(2) proximal diaphysio-met (3) distal diaphysio-metap

(42-C3.3) (1) pure shaft

3. With more than three interm

3. With 2 intermediate segments

fragments (42-C2.3) (1) pure shaft (2) proximal diaphysio-metaphyse

(3) distal diaphysio-metaphysea

fragments (42-C1.3)

C3

Classification

- Gustilo Classification
 - Used to grade severity of OPEN FRACTURES
 - Most commonly used
 - Type determined intra-operatively after debridement
 - Tibia shaft fxs are most common site to require flap coverage, 3B

Туре	Description
• 1	Clean wound <1 cm in lengthLow-energy fracture type
• 11	 Wound size 1–10 cm in length without extensive soft tissue damage Without high-energy fracture type
• IIIA	 Wound associated with more extensive soft tissue damage than type II regardless of wound length Any wound >10 cm regardless of soft tissue stripping High-energy fracture type (segmental) regardless of wound size IIIA must have a skin defect that can be treated with closure or skin grafting
• IIIB	Wound requires muscle or skin flap for coverage
• IIIC	 Vascular repair required to revascularize leg Isolated vascular injury with a well-perfused foot (e.g., peroneal artery with other two arteries still patent) does not classify as IIIC even if the vessel is repaired

Core Curriculum V5

Boulton CL, Rockwood and Green's 2019

Classification

- Tscherne Classification
- Grades soft tissue injury in CLOSED FRACTURES
- *CO*, little or no soft tissue injury, simple fx
- C1, superficial abrasions, mild to moderately severe fx
- C2, deep contamination with local skin or muscle contusion, moderately severe fx
- C3, extensive contusion or crushing of skin or destruction of muscle, severe fx

Boulton CL, Rockwood and Green's 2019

Treatment Options:

- Non-operative
- IMN
- Plate fixation
- External fixation
- Special Techniques
 - Locked intramedullary nailing is the mainstay of treatment of tibial shaft fractures in adults Schmidt AH, Instructional Course Lecture. 2003.
 - Specific injury characteristics including severity and associated injuries may necessitate alternative treatment options

Treatment: Non-operative

- Relative indications for nonoperative treatment
 - Adequate alignment and length in a splint or cast
 - Soft tissue can tolerate cast
 - Significant anesthetic risk
 - Patient refuses operative treatment

Alignment Parameter	Acceptable Malalignment
Varus	<5 degrees
Valgus	<5 degrees
Apex anterior/posterior	<5–10 degrees
Rotation	<0–10 degrees
Shortening	<10–12 mm

Boulton CL, Rockwood and Green's 2019

Core Curriculum V5

Treatment: Non-operative

- Traditional alignment parameters somewhat arbitrary and unreliable
- These malangulations rarely exist in isolation
 - Important to evaluate total deformity
- Shortening of this amount often no longer accepted

Alignment Parameter	Acceptable Malalignment
Varus	<5 degrees
Valgus	<5 degrees
Apex anterior/posterior	<5–10 degrees
Rotation	<0–10 degrees
Shortening	<10–12 mm

Boulton CL, Rockwood and Green's 2019

Treatment: Non-operative Protocol

- Closed reduction with a well molded long leg splint or cast
 - Conscious sedation often required for best reduction
 - Be cautious of risk of compartment syndrome with circumferential cast at initial presentation
- Close follow-up for maintenance of alignment
 - Wedging of cast to adjust alignment if needed
 - Conversion to open treatment if unsuccessful
- Transition to patella bearing cast or brace at 2-4 weeks

Treatment: Non-operative

- Sarmiento reported retrospectively on 1000 closed tibial shaft fxs Sarmiento A, Clin Orthop Relat Res. 1995
 - Nonunion rate of 1.1%
 - 94% healing with \leq 12 mm of shortening
 - $90\% \le 6$ degrees of angulation
 - Final shortening (4.3 mm) correlated strongly with initial shortening (2.5 mm)
- Sarmiento's results have been referenced for years, but have not been replicated
- More recent RCTs favor operative treatment with lower rates of nonunion, malunion, complications and return to work Coles CP, Can J Surg. 2000.

- Surgical treatment indications:
 - Severe initial displacement
 - Failure to obtain adequate closed reduction
 - Open fracture
 - Vascular injury
 - Soft tissue envelope that precludes cast application
 - Patient unable to comply with closed treatment
 - Patient requires early return to activity

- Operative treatment indicated for most tibia shaft fxs in adults
- 96% of surgeons prefer IMN for closed + type 1 open tibia shaft fxs (international survey) Bhandari M, J Bone Joint Surg Am. 2001
- IMN minimizes soft tissue stripping, allows immediate weight bearing compared to ORIF, but can be associated with knee pain

A

- 2 approaches:
 - Infrapatellar (A)
 - Suprapatellar (B)

Boulton CL, Rockwood and Green's 2019

- Infrapatellar approach
 - Traditional approach
 - Knee in hyperflexion to access start point
 - Knee hyperflexion can increase deforming forces in proximal third tibia fractures
 - XR can be difficult

- Suprapatellar approach
 - Semi-extended position
 - Start point accessed through knee
 - Reduces deforming forces, especially in proximal 1/3 tibia fxs
 - Need special instrumentation to protect knee

Core Curriculum V5

Boulton CL, Rockwood and Green's 2019

> J Orthop Trauma. 2020 Jul 8. doi: 10.1097/BOT.00000000001897. Online ahead of print.

Comparison of Infrapatellar and Suprapatellar Approaches for Intramedullary Nail Fixation of Tibia Fractures

Kathryn B Metcalf ¹, Jerry Y Du ¹, Isaac O Lapite ¹, Robert J Wetzel ¹, John K Sontich ¹, Elizabeth R Dachenhaus ¹, Jessica L Janes ¹, George Ochenjele ¹ Affiliations + expand PMID: 32658019 DOI: 10.1097/BOT.00000000001897

- Retrospective study comparing outcomes between infrapatellar and suprapatellar tibial IMN
- Suprapatellar nailing had decreased risk of malunion and decreased risk of post-operative knee pain
- No difference in rate of nonunion or PROMIS physical function or pain interference
- Consistent with other studies

- Start point vitally important for alignment
- Ideal guide wire placement for average tibia:
 - Just medial to the lateral tibial spine on true AP knee XR
 - Just anterior to the articular surface and parallel the anterior tibia cortex on lateral knee XR

- Assuring true AP and lateral XRs with appropriate rotation is crucial to obtaining the start point
- True lateral has overlapping condyles (A)
- True AP knee XR is orthogonal to true lateral
 - Usually lateral tibial plateau edge bisects the fibula shaft (B)
- The fluoroscopic images show the same guide wire in the same position with changes in C- arm rotation (C and D)

Α

Core Curriculum V5

- After guide wire optimally positioned, it is over-reamed by entry reamer
- A ball tip guide wire placed into this pathway
- The ball tip wire is advanced across the fx to the physeal scar in the distal tibia

Boulton CL, Rockwood and Green's 2019

- End point for nail also key to optimal alignment Triantafillou K. J Orthop Trauma. 2017
 - Especially important for distal metaphyseal fxs
- End point should be at the center of the talus
 - This is very lateral within the distal tibial metaphysis
- The wire should be centered on the lateral view

Core Curriculum V5

- Reduction MUST be performed PRIOR to reaming and fixation
- The nail does not reduce fx, unless the canal is properly reamed
- Reduction techniques
 - Manual traction and reduction
 - Push-past technique
 - External fixation assistance
 - Clamps
 - Shantz pins
 - Plate assisted nailing

 Traction, bumps and manual reduction

Core Curriculum V5

- "Push Past" technique Gary JL. Orthopedics. 2014
- Reaming is performed up to and past the fx site, but not at the fx
- The reamer is "pushed" through the fx
- Preserves cortical edges at fx site that help optimize reduction when nail passed

- External fixator can hold length and reduction for reaming and nailing Nicolescu R. J Orthop Trauma. 2019
- Wires or pins must be outside nail path
- Especially helpful for metaphyseal fxs or with limited assistance

- Clamps
 - Placed percutaneously in closed fx
 - Placed through wound in open fx

Boulton CL, Rockwood and Green's 2019

- Unicortical plate fixation
- Can be placed through open wound
- Sometimes helpful for segmental fractures
- Soft tissue stripping and loss of periosteal blood supply at fx site, so not optimal for routine use
- Plates can be left in place to provide additional mechanical stability of fixation

Boulton CL, Rockwood and Green's 2019

Core Curriculum V5

- Fibula fixation (ORIF versus intramedullary fixation)
- Helps establish length
- Some studies indicate intact or fixed fibula may cause higher rates of tibia delayed or nonunion Vallier HA. J Orthop Trauma. 2016

- Reaming creates an IMN path and allows for a larger diameter nail
- Reaming is performed over a guide wire
- It is critical to maintain fracture reduction during reaming
- Once chatter is noted, sequentially ream to 1-1.5 mm over desired nail diameter

- Reaming Debate:
 - Reamed nailing can be destructive to the endosteal blood supply, but the blood supply rebounds within 2 weeks
 - Unreamed nailing preserves the endosteal blood supply, but must use smaller nail
 -this has more or less been settled...

Randomized Trial of Reamed and Unreamed Intramedullary Nailing of Tibial Shaft Fractures

By the Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial Fractures (SPRINT) Investigators*

Investigation performed at McMaster University, Hamilton, Ontario, Canada

- Prospective randomized trial comparing reamed versus unreamed in tibia intramedullary nailing SPRINT. Bhandari M. J Bone Joint Surg Am. 2008
- Possible benefit with reaming in closed tibia shaft fractures
 - Highest failure rates noted in small unreamed nails (<9mm with smaller locking screws)
- No difference between reamed and unreamed nails in open fracture

- Key points:
 - Both reamed and unreamed acceptable
 - Avoid small unreamed nails (ideally not smaller than 9mm)
 - Most common nail diameter = 10 mm
 - Once adequate size nail possible, further aggressive reaming is discouraged
 - DO NOT REAM WITH TOURNIQUET ELEVATED

- Proximal + distal metaphyseal fxs prone to angular malalignment
 - Proximal fxs tend to deform into valgus and apex anterior
 - Distal fxs tend to valgus
- Blocking (Poller) screws can prevent or correct angular deformity
- Blocking screws are placed on the concave side of the deformity
 - Aka, screws are placed where you don't want the nail to go

Boulton CL, Rockwood and Green's 2019

- ORIF NOT generally preferred for tibia shaft fxs, but is an option in certain circumstances:
 - Proximal and distal metaphyseal fxs
 - Articular extension proximal or distal
 - Previous implants (total knee arthroplasty) or deformity that preclude IMN

Boulton CL, Rockwood and Green's 2019

- Fracture pattern often dictates fixation mode
 - Simple fx = direct reduction + absolute stability (A)
 - Comminuted fx = bridge plating + relative stability with secondary bone healing (B)

Core Curriculum V5

Boulton CL, Rockwood and Green's 2019

- Minimally invasive plate osteosynthesis (MIPO), modern anatomic implants, and fluoroscopy for distal tibial shaft fxs can have <9% deep infection and wound dehiscence Vallier HA. J Orthop Trauma. 2016
- Small incisions do not necessarily confer minimally invasive osteosynthesis
 - Avoid significant periosteal stripping and creating unnecessary surgical planes
 - Careful handling of soft tissues and using as much sharp dissection as possible

- Tibia has relatively poor soft tissue coverage and vascularity
- Trauma + surgical dissection can devascularize bone with very high risk of catastrophic infection
- If plating is to be performed for a shaft fx, it must be MIPO
- The surgical insult seen here MUST BE AVOIDED under all circumstances!

Plate vs. Nail

- Existing literature indicates less angular malalignment with ORIF when compared to infrapatellar nailing, especially in metaphyseal fxs Coles CP. Can J Surg. 2000.
- Newer studies show improved alignment in metaphyseal fx nailing with suprapatellar approach + external fixation assistance and/or blocking screws Nork SE. J Orthop Trauma. 2006.
 - Alignment may not be different between plates and nails with modern nailing methods
- Nails allow earlier return to WBAT and in some studies improved functional outcomes

- Provisional stabilization or definitive treatment
- Provisional stabilization used for soft tissue injury or for polytrauma damage control
 - Allows soft tissue rest, decrease in swelling, wound care of soft tissue injury
 - Gives time for planning definitive fixation + soft tissue coverage if needed
- Uniplanar or delta frame external fixators are commonly used for temporary stabilization
- Hybrid fixator excellent alternative for severe soft tissue injury

- Ex-fix can be coupled with soft tissue treatments
 - Negative pressure wound therapy (NPWT)/Wound vac
 - NPWT can lower the need for free flap in open tibia fxs with soft tissue loss Dedmond BT, J Orthop Trauma. 2007
 - NPWT does not lower infection rate for Type IIIB open fxs Bhattacharyya T. Plast Reconstr Surg. 2008
 - Antibiotic beads/Spacer
 - Placement of antibiotic cement within the wound can provide local antibiosis and optimize soft tissues for staged bone graft or transport
 - Return to OR for serial debridements
 - Required with severe open fractures to address tissue viability and contamination control

- Definitive ex-fix indications:
 - severe soft tissue injury
 - bone loss
 - high infection risk
- Pin-to-bar constructs less stable than ring fixators and are prone to malunion/nonunion
 - Uniplanar ex-fix malunion rates 39-48% Court-Brown CM, J Orthop Trauma. 1998
- Ring fixators Ilizarov or hexapod are best for definitive management (96% union open fxs)
- Hexapod fixators allow for post-op adjustment or alignment and length if needed

Ilizarov

Taylor Spatial Frame with adjustable struts

- Theoretical increased risk of infection with primary external fixation and conversion to definitive internal fixation, but exact rates in relation to time in external fixator is unknown
- Many surgeons aim for conversion to definitive fixation before 2 weeks

Treatment: Amputation

- Although current trends are toward limb salvage, amputation remains a viable option
- Amputation performed when limb salvage
 - Poses significant risk to patient survival
 - Irreparable vascular injury
 - Warm ischemic time > 6 hours
 - Functional result will be better with a prosthesis (relative indication)
 - Patient prefers amputation to course of treatment for salvage (relative indication)
- Numerous scoring systems available, but all have limited clinical validity and no correlation with long-term outcome

Open and high energy tibia fractures

- Initial Care
 - Early antibiotics
 - Thorough debridement of foreign material and devitalized tissues
- Low –grade open tibia fxs in stable patient
 - One stage debridement + IMN preferred
 - 3% infection, 89% union without further surgery Kakar S, J Orthop Trauma. 2007
- High-grade open tibia fxs
 - Temporary ex-fix with staged debridement before definitive care
- Types III A,B, & C
 - Best definitive care remains controversial
 - High complication rates with all treatments

Open and high energy tibia fractures

- Proximal third tibia fractures can be covered with gastrocnemius rotation flap (A)
- Middle third tibia fractures can be covered with soleus rotation flap (B)
- Distal third fractures usually require free flap for coverage (C)

Segina DN, OTA Core Curriculum, 2010.

Core Curriculum V5

Open and high energy tibia fractures

- Soft tissue coverage should be achieved as soon as feasible.
 - Ideally within 5-7 days.
 - Longer time to coverage = infection
- Concomitant definitive soft tissue coverage + fixation decreases infection vs staged fixation and coverage Mathews JA, Injury. 2015
 - 4.2% infection when definitive fixation
 + coverage in single procedure
 - 34.6% infection when definitive fixation and coverage in separate procedures

Bone Loss

- Significant bone loss in ~ 10 % of open fxs
 - ~2/3 occurring in the tibia Southam BR, J Orthop Trauma. 2017
- Can occur at time of injury or as a result of debridement
- Various treatment options for bone loss
 - Acute shortening
 - Bone grafting (autograft/allograft)/Induced membrane bone grafting
 - Bone transport (distraction osteogenesis)
 - Vascularized fibula graft
 - Osteocutaneous flap

Bone Loss

- Treatment strategy may affect debridement
- Bone grafting methods (such as Masquelet)
 - Bone spikes are left to maximize bone volume preserved
- Bone transport (Distraction osteogenesis)
 - Potentially devitalized bone spikes removed
 - Optimizes bone contact and mechanics at docking
- Trade off greater bone loss vs. more thorough debridement
- Difference in ease of creating/incorporating new bone between methods major reason for different strategies

- Induced membrane bone grafting (Masquelet) Masquelet AC, Ann Chir Plast Esthet. 2000
 - PMMA spacer to prepare grafting site
 - Creates pro-osteogenic membrane
 - Provides space for bone graft
- Simplest treatment requiring least follow-up and compliance
- Higher risk of infection and failure in tibia than other locations due to poor soft tissue envelope

Segina DN, OTA Core Curriculum 2010.

- Bone Transport
 - Uses distraction osteogenesis to gradually pull apart osteotomy and bring bone segment across defect
 - Reliably creates high quality new bone that recapitulates normal bone anatomy and biology
 - Gradual process requires patient compliance and takes time

- Bone Transport Techniques:
 - External fixation
 - Ilizarov
 - Bifocal frame
 - Monolateral frame
 - Cable transport
 - Integrated
 - Cable transport and then nailing
 - Transport over nail
 - All internal
 - Bone transport nail

- Bone Transport with Ex-Fix:
 - Ilizarov motors transport segment with ring moving down threaded rods and is the original method for bone transport
 - Bifocal allows additional lengthening after transport
 - Hexapod allows adjustment of alignment and docking site
 - Monolateral rail minimizes footprint of ex-fix (helpful for femur) but mechanically inferior
 - Internal cables decrease pain, scarring, and pin problems during transport and facilitate safe conversion to IM fixation

- Bone Transport with Integrated Methods:
 - Integrated methods greatly decrease ex-fix time and some decrease healing time
 - Transport over a nail
 - Nail helps guide transport
 - Risk of infection from pins near nail
 - May be less when done with cable
 - Balanced Cable Transport and Then Nailing Quinnan SM. J Orthop Trauma. 2017
 - Fastest consolidation and docking site healing time of any transport method
 - Facilitates multifocal transport

- Bone Transport with All Internal Methods:
 - Bone Transport Nail
 - Optimal control of alignment
 - Similar healing time to Ilizarov
 - 11.5 or greater size nails can WBAT
 - PABST (Plate assisted bone segment transport) Olesen UK. J Am Acad Orthop Surg Glob Res Rev. 2019.
 - First all-internal method
 - Large amount of hardware under poor soft tissue coverage in tibia problematic for infection
 - Alignment control and docking management can be difficult
 - Early results of BTN for open fxs are promising, but no long-term follow-up available

<u>Outcomes</u>

THE BONE & JOINT JOURNAL Volume 96-B, Issue 10, October 1, 2014, Pages 1370-1377 Copyright © 2014, The British Editorial Society of Bone and Joint Surgery: All rights reserved https://doi.org/10.1302/0301-620X.96B10.32914

TRAUMA

Outcome at 12 to 22 years of 1502 tibial shaft fractures

- C. L. Connelly, BMed Sci (Hons), MBChB¹, Foundation Year 1
- V. Bucknall, MBChB, BMSc (Hons), MRCS Eng¹, Orthopaedic Registrar Year 3
- P. J. Jenkins, FRCSEd(Tr& Orth), MFSTEd², Consultant Trauma & Orthopaedic Surgeon
- C. M. Court-Brown, MD, FRCS Ed(Orth)¹, Professor of Orthopaedic Trauma
- M. M. McQueen, MD, FRCS Ed(Orth)¹, Professor of Orthopaedic Trauma
- L. C. Biant, FRCSEd(Tr& Orth), MS¹, Consultant Trauma& Orthopaedic Surgeon
- Largest long-term(12-22 years) follow up 568 patients with tibia shaft fracture
- 90.7% union rate
- 46% were pain free
- 75 % returned to pre-injury work level
- 9% returned to less physically demanding job
- 20.1% were unable to return to work due to disability
- Mechanism of injury correlated with outcome, higher mechanism of injury resulted in worse long-term function

Complications

- Deep Infection
- Non-union
- Malunion
- Anterior Knee Pain/ Symptomatic hardware

Complications: Deep Infection

- Infectious complications closely linked to severity of soft tissue injury
 - Closed + Type 1 open tibia shaft fractures ~1.8%
 - Type III open fracture 14.3 60% O'Toole RV, JOT 2017
- Staphylococcus aureus is most common organism ~64% of deep infections Zych GA, Clin Orthop Relat Res. 1995
- Treatment can be complex and depends upon
 - Stage of bone and soft tissue healing
 - Acute or chronic infection

Complications: Non-union

- Defining delayed union and/or non-union can be difficult
- Mean time to tibia shaft union is 15.7 to 35.8 weeks Boulton CL, Rockwood and Green's Fractures 2020.
 - Longer than the 3 months for most other fxs
- Non-union of tibia shaft fx typically defined
 - lack of complete healing
 - pain with weight bearing
 - absence of visible callus or failure of consolidation after 6 months
- However, this definition should not delay treatment if healing is clearly failing to progress before 6 months

Complications: Non-union

- Nonunion rates for fxs treated operatively Boulton CL, Rockwood and Green's Fractures 2020
 - Closed tibia shaft fxs 1-8%
 - Open tibia shaft fxs 5.3-24%
- Risks factor for non-union include open fx, deep infection, post-op fracture gap, distal fx and smoking

Complications: Malunion

- No clear definition
- Commonly cited *acceptable* numbers
 - Varus/valgus <5-10 degrees
 - Recurvatum/procurvatum <5-10 degrees
 - Rotation of 0-10 degrees
 - Shortening of 1-2 cm
- Malalignment results in abnormal joint forces at the knee and ankle, but above cutoffs are not clinically validated and oversimplify deformity

Complications: Malunion

- Every malunion potentially has components of deformity in six axes that should be evaluated as a whole
 - Varus/Valgus
 - Apex Anterior/Posterior
 - Internal/External Rotation
 - Shortening/Overlengthening
 - Medial/Lateral Translation
 - Anterior/Posterior Translation
- Correction of symptomatic malunion involves an osteotomy and often multiplanar correction

<u>Complications: Anterior Knee Pain/</u> Symptomatic Hardware

- Anterior knee pain is common with both infrapatellar and suprapatellar nailing, 19%-73% Boulton CL, Rockwood and Green's, 2020, but lower for suprapatellar approach MacDonald DRW, Bone Joint J. 2019
- Exact etiology is unknown and likely multifactorial
 - Infra-patellar nerve damage
 - Proximal interlock screw pain
 - Prominent nail proximally
 - Post-op changes to patellar tendon (infrapatellar)
 - Fat pad scarring/adhesions
- Symptomatic hardware can exist in both IMN and ORIF
 - Long or subcutaneous interlocks, prominent nail in IMN
 - Subcutaneous plates/screws in ORIF
- Hardware removal frequently resolved symptoms related to prominent hardware, but not always knee pain Williams BR, J Am Acad Orthop Surg Glob Res Rev. 2020.

Proposed Algorithm From Rockwood and Greens

Summary

- Common fx with bimodal distribution
- IMN is gold standard for most closed and low-grade open tibia shaft fxs
- ORIF can be used for very distal or proximal metaphyseal fxs, especially if there is articular extension
 - Pay special attention to soft tissue handling during ORIF
- Open and high energy tibia shaft fxs have high complication rates
 - Require timely soft tissue coverage
 - Definitive care with IMN vs Ex-Fix

References

- 1. Lang GJ. Fractures of the tibial diaphysis. In: Kellam JF, ed. *Orthopaedic Knowledge Update Trauma*. Rosemont, IL: AAOS; 2000:177-189.
- 2. Boulton CL, O'Toole RV . Tibia and Fibula Shaft Fractures. In: Tornetta P III, ed. *Rockwood and Green's Fractures in Adults, 9e.* Philadelphia : Wolters Kluwer; 2020: 2687-2751.
- 3. Schmidt AH, Finkemeier CG, Tornetta P III. Treatment of closed tibial fractures. *Instructional Course Lecture*. 2003;52:607-622.
- 4. Sarmiento A, Sharpe FE, Ebramzadeh E, et al. Factors influencing the outcome of closed tibial fractures treated with functional bracing. *Clin Orthop Relat Res*. 1995;315:8–24.
- 5. Coles CP, Gross M. Closed tibial shaft fractures: Management and treatment complications: A review of the prospective literature. *Can J Surg*. 2000;43(4):256–262.
- 6. Bhandari M, Guyatt GH, Swiontkowski MF, et al. Surgeons' preferences for the operative treatment of fractures of the tibial shaft: An international survey. *J* Bone Joint Surg Am. 2001;83-A:1746–1752.
- 7. Metcalf KB, Du JY, Lapite IO, Wetzel RJ, Sontich JK, Dachenhaus ER, Janes JL, Ochenjele G. Comparison of Infrapatellar and Suprapatellar Approaches for Intramedullary Nail Fixation of Tibia Fractures. J Orthop Trauma. 2020 Jul 8. doi: 10.1097/BOT.00000000001897. Epub
- 8. Triantafillou K, Barcak E, Villarreal A, Collinge C, Perez E. Proper Distal Placement of Tibial Nail Improves Rate of Malalignment for Distal Tibia Fractures. J Orthop Trauma. 2017 Dec;31(12):e407-e411. doi: 10.1097/BOT.00000000000989. PMID: 28742786.
- 9. Gary JL, Munz JW, Burgess AR. "Push-past" reaming as a reduction aid with intramedullary nailing of metadiaphyseal and diaphyseal femoral shaft fractures. Orthopedics. 2014 Jun;37(6):393-6. doi: 10.3928/01477447-20140528-05. PMID: 24972428.
- 10. Nicolescu R, Quinnan SM, Lawrie CM, Hutson JJ. Tensioned Wire-Assisted Intramedullary Nail Treatment of Proximal Tibia Shaft Fractures: A Technical Trick. J Orthop Trauma. 2019 Mar;33(3):e104-e109. doi: 10.1097/BOT.00000000001410. PMID: 30768533.
- 11. Vallier HA. Current Evidence: Plate Versus Intramedullary Nail for Fixation of Distal Tibia Fractures in 2016. J Orthop Trauma. 2016 Nov;30 Suppl 4:S2-S6. doi: 10.1097/BOT.000000000000692. PMID: 27768625.
- 12. Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial Fractures Investigators, Bhandari M, Guyatt G, Tornetta P 3rd, Schemitsch EH, Swiontkowski M, Sanders D, Walter SD. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am. 2008 Dec;90(12):2567-78. doi: 10.2106/JBJS.G.01694. PMID: 19047701; PMCID: PMC2663330.
- 13. Nork SE, Barei DP, Schildhauer TA, et al. Intramedullary nailing of the proximal quarter tibial fractures. *J Orthop Trauma*. 2006;20(8):523–528.
- 14. Dedmond BT, Kortesis B, Punger K, Simpson J, Argenta J, Kulp B, Morykwas M, Webb LX. The use of negative-pressure wound therapy (NPWT) in the temporary treatment of soft-tissue injuries associated with high-energy open tibial shaft fractures. J Orthop Trauma. 2007 Jan;21(1):11-7. doi: 10.1097/BOT.0b013e31802cbc54. PMID: 17211263.

- 15. Bhattacharyya T, Mehta P, Smith M, Pomahac B. Routine use of wound vacuum-assisted closure does not allow coverage delay for open tibia fractures. Plast Reconstr Surg. 2008 Apr;121(4):1263-6. doi: 10.1097/01.prs.0000305536.09242.a6. PMID: 18349645.
- 16. Court-Brown CM, Hughes SP. Hughes external fixator in treatment of tibial fractures. JR Soc Med. 1985;78(10):830–837.
- 17. Henley MB, Chapman JR, Agel J, et al. Treatment of type II, IIIA, and IIIB open fractures of the tibial shaft: A prospective comparison of unreamed interlocking intramedullary nails and half-pin external fixators. J Orthop Trauma. 1998;12(1):1–7.
- 18. Kakar S, Tornetta P 3rd. Open fractures of the tibia treated by immediate intramedullary tibial nail insertion without reaming: A prospective study. *J Orthop Trauma*. 2007;21(3):153–157.
- 19. Mathews JA, Ward J, Chapman TW, Khan UM, Kelly MB. Single-stage orthoplastic reconstruction of Gustilo-Anderson Grade III open tibial fractures greatly reduces infection rates. Injury. 2015 Nov;46(11):2263-6. doi: 10.1016/j.injury.2015.08.027. Epub 2015 Aug 22. PMID: 26391592.
- 20. Southam BR, Archdeacon MT. "Iatrogenic" Segmental Defect: How I Debride High-Energy Open Tibial Fractures. J Orthop Trauma. 2017 Oct;31 Suppl 5:S9-S15. doi: 10.1097/BOT.00000000000984. PMID: 28938384.
- 21. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction des os longs par membrane induite et autogreffe spongieuse [Reconstruction of the long bones by the induced membrane and spongy autograft]. Ann Chir Plast Esthet. 2000 Jun;45(3):346-53. French. PMID: 10929461.
- 22. Quinnan SM, Lawrie C. Optimizing Bone Defect Reconstruction-Balanced Cable Transport With Circular External Fixation. J Orthop Trauma. 2017 Oct;31(10):e347-e355. doi: 10.1097/BOT.000000000000994. PMID: 28938286.
- 23. Olesen UK, Nygaard T, Prince DE, Gardner MP, Singh UM, McNally MA, Green CJ, Herzenberg JE. Plate-assisted Bone Segment Transport With Motorized Lengthening Nails and Locking Plates: A Technique to Treat Femoral and Tibial Bone Defects. J Am Acad Orthop Surg Glob Res Rev. 2019 Aug 12;3(8):e064

Core Curriculum V5

24. Connelly CL, Bucknall V, Jenkins PJ, et al. Outcome at 12-22 years of 1502 tibial shaft fractures. Bone Joint J. 2014;96-B(10):1370–1377.

- 25. O'Toole, Robert V. MD^{*}; Gary, Joshua L. MD⁺; Reider, Lisa PhD[‡]; Bosse, Michael J. MD[§]; Gordon, Wade T. MD^I; Hutson, James MD^I; Quinnan, Stephen M. MD^I; Castillo, Renan C. PhD[‡]; Scharfstein, Daniel O. ScD^{**}; MacKenzie, Ellen J. PhD[‡]; METRC A Prospective Randomized Trial to Assess Fixation Strategies for Severe Open Tibia Fractures: Modern Ring External Fixators Versus Internal Fixation (FIXIT Study), Journal of Orthopaedic Trauma: April 2017 Volume 31 Issue p S10-S17 doi: 10.1097/BOT.000000000000804
- 26. Zych GA, Hutson JJ Jr. Diagnosis and management of infection after tibial intramedullary nailing. *Clin Orthop Relat Res*. 1995;315:153–162.
- 27. MacDonald DRW, Caba-Doussoux P, Carnegie CA, Escriba I, Forward DP, Graf M, Johnstone AJ. Tibial nailing using a suprapatellar rather than an infrapatellar approach significantly reduces anterior knee pain postoperatively: a multicentre clinical trial. Bone Joint J. 2019 Sep;101-B(9):1138-1143. doi: 10.1302/0301-620X.101B9.BJJ-2018-1115.R2. PMID: 31474148.
- Williams BR, McCreary DL, Parikh HR, Albersheim MS, Cunningham BP. Improvement in Functional Outcomes After Elective Symptomatic Orthopaedic Implant Removal. J Am Acad Orthop Surg Glob Res Rev. 2020 Sep;4(9):e2000137. doi: 10.5435/JAAOSGlobal-D-20-00137. PMID: 32890009; PMCID: PMC7469997.

Core Curriculum V5

29. Figures used with permission: Boulton CL, O'Toole RV. Tibia and Fibula Shaft Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

