Midfoot Fractures and Dislocations

Nicholas Romeo, DO
Assistant Professor, Orthopaedic Surgery
MetroHealth Medical Center
Case Western Reserve University
Objectives

1. Understanding of midfoot anatomy
2. Identify indications for advanced imaging/stress exam
3. Identify specific injury patterns
4. Comprehend goals of treatment
5. Understand indications for arthrodesis versus ORIF
Outline

• Midfoot anatomy
• Physical exam
• Imaging
• Treatment/Outcomes
 • Tarsometatarsal joint complex injuries
 • Navicular Fracture/Dislocations
 • Cuboid Fractures
 • Cuneiform Fractures
Anatomy
Functional Anatomy

• Column Theory
 • Mid/forefoot

• Medial column (Yellow)
 • First TMT and NC joints
 • Limited mobility at first TMT
 • Mobile segment is the talonavicular joint

Yellow shading = medial column, red shading = intermediate column, green shading = lateral column
Functional Anatomy

• Column Theory
 • Intermediate column (Red)
 • 2nd, 3rd TMT joints and NC joints
 • Rigid (no motion)

Yellow shading = medial column, red shading = intermediate column, green shading = lateral column
Functional Anatomy

• Column Theory
• Lateral Column (Green)
 • 4th and 5th TMT joints
 • Mobile
 • Essential
 • Shock absorber

Yellow shading = medial column, red shading = intermediate column, green shading = lateral column
Functional Anatomy

• 2 Column Theory

 • **Medial column**
 • Rigid
 • Lever for propulsion

 • **Lateral column is mobile**
 • Shock absorber
 • Accommodate to uneven surfaces

 • Essential v non-essential joints

Columns and essential joints of the foot.

Pink: The medial column of the foot. *Green:* The lateral column of the foot. *Blue and orange lines:* Essential or nonessential, but useful, joints. *Gray lines:* Unnecessary joints.

Anatomy – Midfoot Bony

• Note alignment of talonavicular (TN) and naviculocuneiform joints
Midfoot Anatomy

- Trapezoidal configuration
- Recessed 2nd Tarsometatarsal (TMT) joint
 - “keystone” of the transverse arch
- Individual joints are “flat on flat”
- TMT joints have little inherent stability due to shallow articulation

Image obtained from AO surgery reference
Midfoot Ligamentous Anatomy

- Transverse Intermetatarsal ligaments secure M2-M5
- No intermetatarsal ligament between M1-M2
- Interosseous C1-M2 ligament = Lisfranc ligament
- Plantar ligaments stronger than dorsal ligaments
- Dorsal ligaments are first to fail under tension leading to dorsal subluxation of metatarsal bases

Midfoot Vascular Anatomy

- Local blood supply should always be considered in evaluation surgical planning

Images obtained from AO surgery reference
Vascular Anatomy - Navicular

• Tenuous dorsal blood supply
• Avoid dorsal soft tissue stripping during ORIF to prevent injury

Dorsal navicular blood supply
Image obtained from AO surgery reference
Initial Evaluation

• Soft tissues
• Skin tenting
• Neurovascular evaluation
• Plantar Ecchymosis
 • High suspicion of midfoot ligamentous injury

Plantar ecchymosis in patient with Lisfranc injury
Imaging
Imaging

- XR
 - AP/Oblique/Lateral of the foot
 - AP
 - Oblique
 - Standing AP bilateral feet on same plate if tolerable
 - Intraoperative stress exam
- CT – useful for evaluation of intraarticular extension
- MRI – evaluate ligamentous structures
 - Limited use as static evaluation
Imaging—Stress exam

- Clinical test to identify TMT joint injury
 - Left: TMT squeeze test
 - Right: abduction-pronation maneuver
Imaging

• XR
 • AP/Oblique/Lateral of the foot
 • AP
 • Medial base 2nd MT in-line with medial aspect of middle cuneiform

AP standing XR of bilateral feet displaying normal alignment on right with evidence of TMT disruption on the left
Imaging

• XR
 • AP/Oblique/Lateral of the foot
 • AP
 • Oblique
 • Medial base 3rd MT in-line with medial aspect of lateral cuneiform
 • Medial base 4th MT in-line with medial aspect of cuboid
Imaging

- XR
 - AP/Oblique/Lateral of the foot
 - AP
 - Oblique
 - Lateral
 - Metatarsal base should never be more dorsal than its respective tarsal bone
 - Standing view – better appreciate any discrepancy

L injured side (bottom image) with MT dorsal to cuneiform
Also note dorsal soft tissue swelling
Imaging

• XR
 • AP/Oblique/Lateral of the foot
 • AP
 • Oblique
 • Standing AP bilateral feet on same plate
 • Uninjured side as reference

AP standing XR of bilateral feet displaying normal alignment on right with evidence of TMT disruption on the left
Imaging

• XR
 • AP/Oblique/Lateral of the foot
 • Standing AP bilateral feet on same plate
 • ”Fleck sign” - small avulsion fracture from base of second metatarsal or medial cuneiform.

• CT – useful for evaluation of intra articular extension

• MRI – evaluate ligamentous structures
 • Limited use as static evaluation

Axial CT displaying fracture of the medial cuneiform with lateral translation of the 1st – 3rd TMT joints
Specific Midfoot Injuries
Tarsometatarsal (Lisfranc) Joint Injuries

• Jacques L. Lisfranc, French gynecologist
 • First to describe amputation technique through TMT joint

• Rare injuries (0.1-0.4% of all fractures)
 • Rockwood and Green’s Fractures in Adults 9th Ed

• Purely ligamentous injuries often misdiagnosed
TMT Joint Injuries - Evaluation

• As frequently overlooked must have high index of suspicion

• Plantar ecchymosis often present

Plantar ecchymosis in patient with Lisfranc injury
TMT Joint Injuries - Evaluation

• If concern present and no findings on static XR
 • Stress XR
 • Standing XR with boot feet on same plate for AP
 • Fluoroscopic stress exam
 • MRI – less helpful as static exam
 • Strain of ligament may not correlate with instability

• Often occur with other midfoot injuries
 • Cuboid fracture
 • Intercuneiform instability/fracture

Standing radiographs of a patient with left TMT joint disruption
TMT Joint Injuries - Classification

• OTA
• Quenu and Kuss
 • Directional
 • Partial v complete

The common classification devised by Quénu and Küss.307

A: Depicts homolateral disruption where all metatarsals travel in the same direction. This group can be subdivided into medial or lateral to denote the direction of disruption. B: Partial disruption involves only the first metatarsal or all the lesser rays. C: Divergent dislocation occurs when there is complete disruption of the tarsometatarsal joints but the first ray and the lesser rays displace in opposite directions.

TMT Joint Disruption – Acute Management

• Reduce dislocation
 • Split
 • CRPP
 • Unstable midfoot injuries with skin compromise or potential for such
 • Urgent when skin under tension

Pre and post reduction radiographs of patient with TMT disruption after crush injury
TMT Injuries – Soft Tissue Crush

- Severe TMT disruption secondary to crush injury; presented 6 hours from injury
- CRPP immediately (center image). Note dorsal eschar already forming upon presentation to OR same day of injury
- Follow up image 1 week later (far right)
TMT Joint Disruption – Treatment

• Acute ligamentous
 • ORIF v. arthrodesis
 • Purely ligamentous lesions treated with arthrodesis have been shown to have superior AOFAS scores
 • Ly ET al. JBJS 2006

• Acute Fracture
 • ORIF
 • Traversing screws
 • Spanning dorsal plate
 • Avoids disruption of articular surface
 • No difference in clinical outcomes plate v screws
 • Lau et al JOT 2017

• Subacute (>3 months) & chronic
 • Arthrodesis
TMT Joint Disruption – Evaluation

• Complete evaluation of entire midfoot
 • Fluoroscopic stress
TMT Joint Disruption – Operative Management

• Critical to have thorough surgical planning including approach, reduction sequence and fixation methods

• Approaches
 • Plan surgical incisions accordingly
 • 5cm skin bridge
 • Typically medial and lateral incisions

Image obtained from AO surgery reference
TMT Joint Disruption – Operative Management

• Reduction sequence
 • Stabilize from proximal to distal and medial to lateral
 • Always assess for naviculocuneiform and intercuneiform disruption
 • Stabilize accordingly
 • Image on right displays reduction sequence with intercuneiform instability identified intraoperatively*
TMT Joint Disruption – Operative Management

• Rigid fixation for 1-3rd metatarsals (medial column)
 • Screws crossing joint
 • Best for purely ligamentous
 • Spanning plate fixation
 • Fracture/comminution

• Flexible fixation (CRPP) for 4&5th metatarsals (lateral column)
 • Typically 0.062 K-wires
 • Remove at 6+ weeks
TMT Joint Disruption – Surgical Outcomes

• Average AOFAS score, 79.0; FFI, 16.9, and VAS for pain, 2.5.
 • Stern R JBJS Am 2016

• Accuracy of reduction correlates with clinical outcome
 • Kuo et al JBJS 2000
 • Lau et al. JOT 2017

• Purely ligamentous injuries have superior outcomes when tx with arthrodesis over ORIF
 • Both with lower AOFAS scores compared to baseline
 • Ly et al. JBJS 2006
 • Henning FAI 2009

Midfoot arthrosis s/p TMT disruption
TMT Joint Disruption - Complications

• Symptomatic implants
 • Higher rate of secondary surgery (implant removal and salvage arthrodesis) for ORIF v arthrodesis; 78.6% vs. 16.7%
 • Henning et al Foot Ankle Int 2009

• Midfoot arthritis
 • Poor association between radiographic (72% of patients) and symptomatic (54% of patients) arthritis
 • Dubois-Ferrière JBJS Am 2016
Tarsal Navicular Fractures

- Rare injuries
- Traumatic fractures most commonly occur with other associated midfoot trauma

Displaced navicular body fracture
Tarsal Navicular Fractures - Classification

- Stress fractures
- Acute fractures
 - Avulsion
 - Tuberosity
 - Body
- OTA classification

OTA/AO Fracture and Dislocation Classification Compendium
Tarsal Navicular Fractures - Imaging

• XR
• CT scan particularly useful to determine full extent of injury/displacement

Displaced navicular body (red arrow) and cuboid fractures
Tarsal Navicular Fractures - Management

• Stress fracture
 • 6-8 weeks short leg cast
 • Equivalent outcomes to operative management

• Avulsion fractures
 • Non operative management
 • Minimal displacement
 • No articular involvement
Management of Navicular Body fractures

• Non operative management –
 • Isolated fractures without articular involvement
 • Nondisplaced articular fractures
 • Can be considered for conservative management but must be followed closely

CT scan confirming nondisplaced navicular body fracture
Management of Navicular Body Fractures

• Operative management
 • Indications
 • Articular involvement with displacement
 • Unstable medial column
 • Those occurring with associated midfoot injuries
 • Techniques
 • As with any operatively managed injury it is critical to have thorough surgical planning including approach, reduction sequence and fixation methods

Navicular body fracture dorsal plating
Management of Navicular Body Fractures

• Techniques
 • Lag screw fixation
 • Simple fractures without significant comminution
 • Plate fixation
 • Fractures not amendable to screw fixation alone
 • Multifragmentary/comminuted fractures
 • Fractures associated with dislocation and/or impaction that require spanning fixation to cuneiforms and/or talus

Navicular body fracture dorsal plating
Tarsal Navicular Fractures - Outcomes/Complications

• Post traumatic arthrosis most common sequela
 • Complex fracture patterns tend to result in long-term disability of foot
 • Simple patterns often have more promising outcome

• Osteonecrosis

• Deformity

• Nonunion

Comminuted navicular fracture
Navicular Dislocation

- Typically occur along with fracture
- Reduce acute dislocations
 - For unstable injuries with current or risk for skin compromise CRPP
 - Should be performed urgently to prevent further skin compromise
 - CRPP allows for earlier resolution of soft tissue swelling
Navicular Dislocation - Definitive Management

- Spanning plate fixation often required due to instability
- Dependent on injury pattern can span to cuneiform alone or may require spanning fixation of entire medial column
 - Schildhauer et al JOT 2003
- Spanning of TN joint must be temporary as this is an essential joint – remove at 2-4 months
Cuboid Fractures

• Most frequently occur in conjunction with other midfoot injuries
• High index of suspicion for TMT ligamentous or other mid foot fracture
• “Nutcracker fracture”
• Lateral column length
Cuboid Fractures – Imaging/Classification

- CT scan
 - Operative planning
 - Articular impaction/comminution
- Classification
 - OTA

AO/OTA classification
Cuboid Fractures – Management

- Nonoperative Criteria
 - Isolated cuboid fractures
 - Non/minimally displaced
 - Maintained lateral column length
 - NWB in cast 6-8 weeks

- Operative
 - Displaced fractures
 - Shortened lateral column
 - Associated injuries
Cuboid Fractures – Operative treatment

• ORIF
 • Most common intervention
 • Generally plate fixation
 • Anatomic plates or mini fragment

• Lateral column external fixation
 • Can be used for intraoperative distraction during ORIF
 • As an adjunct to plate fixation
 • Extensively comminuted fractures not amendable to plate/screw fixation

• Lateral column bridge plating
 • Can be utilized in severely comminuted fractures
 • Requires removal as prevents lateral column motion (essential joints)

Cuboid ORIF with lateral column external fixator utilized for intraoperative distraction
Cuboid Fractures – Outcomes

• Arthritis in CC joint as well as 4/5 TMT joints is poorly tolerated
• Shortening of lateral column can lead to foot abduction/deformity and subsequent pain
• No long-term studies utilizing validated scoring systems
• Simple, isolated fractures tend to have more favorable outcome than comminuted fractures with associated injuries
Cuneiform Injuries

• Rarely occur in isolation
• Most often occur in conjunction with TMT joint injuries
• Bony disruption (fracture) or ligamentous (intercuneiform or naviculocuneiform joint disruption)
• Stress XR – eversion/pronation stress to assess for midfoot ligamentous injury
• CT scan for evaluation

Comminuted cuneiform fracture in multiply injured patient
Cuneiform Injuries - Treatment

• Non operative
 • Isolated
 • Nondisplaced

• Operative
 • Displaced
 • Occurring with associated midfoot injuries

CT scan displaying a comminuted cuneiform fracture with impaction
Cuneiform Injuries – Operative Treatment

• Joint Disruption
 • Intercuneiform disruption most often treated with screw fixation traversing effected joints
 • Should be reduced and stabilized prior to reduction of TMT joints
 • Naviculocuneiform disruption most often stabilized by spanning plate fixation

• Fractures
 • Spanning plate
 • Comminuted
 • Joint disruption
 • Screw fixation
 • Simple pattern

Comminuted cuneiform fracture with significant articular impaction treated with reduction and spanning plate fixation
Note disruption of 2nd and 3rd TMT joints identified intraoperatively
Summary

• Midfoot injuries are rare
• Often associated with concomitant foot injuries
• Always assess for other injuries – advanced imaging (CT scan, stress x-rays) as needed
• Develop thorough surgical plan
• Chronic discomfort is not infrequent
References

• AO Surgery Reference
• Ly T, Coetzee JC. Treatment of Primarily Ligamentous Lisfranc Joint Injuries: Primary Arthrodesis Compared with Open Reduction and Internal Fixation, JBJS: March 2006 - Volume 88 - Issue 3 - p 514-520.
References (cont)

