Ligamentous & Tendon Injuries about the Ankle

Marissa Bonyun MD, MEd, FRCSC

Assistant Professor Arthroplasty, Lower Extremity Reconstruction and Orthopaedic Trauma University of Cincinnati, Cincinnati, OH

Christopher Cosgrove, MD

Orthopaedic Trauma Surgery Campbell Clinic Orthopaedics Memphis, TN

Objectives

- I. Low Ankle Sprains
- II. High Ankle Sprains / Syndesmosis
- **III. Achilles Tendon Rupture**
- **IV.** Peroneal Tendon Injuries
- V. Anterior Tibialis Tendon Injuries

I. Low Ankle Sprains

Epidemiology / Etiology

- 14% of all athletic injuries highest prevalence in college athletes, soccer/volleyball/basketball
- 80+% of all ankle sprains
- Mechanism: inversion ankle injury most common
 - ATFL, CFL most common.
- Associated injuries
 - osteochondral defects (talus), peroneal tendon injuries, deltoid ligament injury, fractures (base of 5th MT, anterior process calcaneus, lateral and posterior process of talus)

I. Low Ankle Sprains

<u>Anatomy</u>

- Ligaments involved in low ankle sprains:
 - ATFL (anterior talofibular ligament)
 - CFL (calcaneofibular ligament)
 - PTFL (posterior talofibular ligament)
 - TFL + CFL: combined tear \rightarrow varus tilt of talus
- Functional stability of ankle joint dependent on ligamentous reinforcement

Timothy O. White, Kate E. Bugler. Ankle Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

I. Low Ankle Sprains

<u>Anatomy</u>

• ATFL

- most commonly involved; weakest (140-300N), only crosses the ankle joint
- Prevents ant displacement and IR of talus
- Tears: usually midsubstance rupture or talar avulsion
- Mechanism: plantar flexion, inversion
- Exam: anterior drawer laxity in plantar flexion

<u>Anatomy</u>

• CFL

- 2nd most common (50-75%) (260-400N); crosses both ankle and subtalar joints
- Mechanism: dorsiflexion, inversion
- Exam: anterior drawer laxity/talar tilt in dorsiflexion
- PTFL
 - less commonly involved in low ankle sprains (<10%)(310-345N)
- TFL + CFL: combined tear
 - Varus tilt of talus

I. Low Ankle Sprains

Presentation / Exam

- Patient reports "rolling" ankle. pain with weight-bearing, difficulty returning to play
 - Severe injuries may have audible snap and increased pain/swelling
- Mechanical symptoms possible with recurrent injury

Exam

- Focal tenderness, edema, ecchymosis laterally over involved ligaments
- Exam: Palpate bony structures, then ligamentous structures, ROM, muscle testing, special tests
 - Normal ROM
 - 0-20 deg DF (ankle)
 - 40-50 deg PF (ankle)
 - 20-30 deg INV 10 deg EV

Exam

- Anterior drawer test knee flexed 20 deg, hindfoot neutral.
 - in plantar flexion = indicates ATFL rupture
 - in dorsiflexion = indicates additional CFL rupture
- Talar tilt test (ATFL PF; CFL DF)ankle in neutral invert the hindfoot and compare to contralateral

- Ottawa ankle rules: obtain ankle xrays IF... (100% sensitivity)
 - Inabilty to bear weight x4 steps
 - Medial / lateral malleolus point tenderness
 - 5th MT base tenderness
 - Navicular tenderness

- X-Rays- which ones to obtain?
 - Varus stress
 - Talar tilt- varus tilt indicates low ankle sprain
 - Ankle series: AP, Mortise, Lateral (weight bearing if possible)

I. Low Ankle Sprains

Timothy O. White, Kate E. Bugler. Ankle Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

• MRI

- sensitive for ligamentous and syndesmotic injuries
- NOT predictive of functional instability
- When to obtain? consider if pain >8 wk and management not resolving pain
 - evaluate peroneal tendons, osteochondral injury, coalition, bone bruise
- CT- rarely indicated acutely
 - potentially useful post-op to assess quality of reduction of syndesmosis

Classification systems (multiple)

• Anatomic system – 3 grades according to ligaments damaged

	Ligament disruption	Ecchymosis, Swelling	Pain with WB
Grade I	ATFL stretched	Minimal	Occasional
Grade II	ATFL tear + CFL stretch	Moderate	Mild-moderate
Grade III	Complete tear	Severe	Severe

- Kaikkonen dynamic functional grading scheme; performance test protocol w associated scoring scale based on subjective responses, clinical measurements, muscle strength, functional stability and balance.
- Clanton stable vs unstable, athlete vs non. Therapeutic implications

I. Low Ankle Sprains

Prevention

- Handoll et al, Cochrane Review, 2001
 - Meta-analysis of 14 RCTs supports external ankle orthotics (semi-rigid) to prevent ligamentous injuries in high risk athletics

I. Low Ankle Sprains

• Nonoperative:

- Acute: RICE, NSAIDs
- Early WBAT in boot or cast (esp for grade 3 sprains) for early mobilization
 - Grade 3 sprains rest in boot 3-7 days before starting rehab
 - Meta-analysis of 21 RTS functional tx > immobilization
- Therapy (after acute swelling/pain subside)
 - focuses on motion, peroneal strengthening, and proprioception training
 - functional brace during rehab and early return-to-play

- Majority will return to normal activity by 8 wks
 - incomplete rehab is most common cause of persistent loss of motion/proprioception/strength
 - Estimated 10-30% incidence of functional instability
 - If persistent pain, swelling, and limitations after 6-8 wk, repeat imaging is indicated

• Operative:

- Rare indications
 - Continued pain and instability despite extensive non-op therapy
 - Inability to tolerate bracing (e.g. skin problems/work issues)
 - Recurrent instability with daily activities
 - Scope at time of surgical repair to address intra-articular lesions as up to 93% can have associated lesions requiring intervention with chronic ankle instability
 - Arthroscopic debridement AITFL impingement/posteromedial impingement removal of loose bodies
 - Not always detected on MRI (40% sensitivity)
 - Don't forget to examine the hindfoot for VARUS
 - Correcting cavovarus foot deformity can reduce instability and potentially delay post traumatic arthritis

I. Low Ankle Sprains

• Anatomic repair: acute

- Brostrum repair ATFL/CFL imbrication and suture repair of ligaments
- **Gould modification** Mobilization of lateral portion of inferior extensor retinaculum and attachment to distal fibular periosteum
 - Functional results = very good in 90% of patients
- Karilson modification reattach ligaments to fibula through drill holes in addition to suture repair

I. Low Ankle Sprains

- Tendon transfer / Tenodesis stabilization (non-anatomic reconstruction)
 - Evans procedure
 - transposition of peroneus brevis tendon through oblique posterior superior drill hole in distal fibula in between CFL and ATFL
 - can be used to augment Brostrom repair
 - Watson-Jones procedure
 - Lateral ligament reconstruction with peroneus brevis tenodesis through talus and fibula to replace ATFL leaving distal part of peroneus brevis intac
 - **Chrisman-Snook procedure**: split peroneus brevis to reconstruct ATFL and CFL so some peroneus brevis function maintained
 - Main complication is subtalar stiffness and results are not as good as anatomic

I. Low Ankle Sprains

II. High Ankle Sprains / Syndesmotic Injuries

Ligamentous Anatomy

- Anterior Inferior Tibiofibular (AITFL)
- Posterior Inferior Tibiofibular (PITFL)
- Transverse Tibiofibular
- Interosseous Ligament (IOL)

Timothy O. White, Kate E. Bugler. Ankle Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

II. High Ankle Sprains / Syndesmosis Injuries

Anterior Inferior Tibiofibular (AITFL)

- Originates on anterolateral tibial tubercle (Chaput's)
- inserts on anterior fibular (Wagstaffe's) tubercle
- Contributes 35% stability of the syndesmosis (Ogilvie-Harris Arthroscopy 1994)
- Superior and inferior insertions of AITFL 22.7 and 3.4mm prox to distal tibia articular cartilage, respectively
- Typically the first ligament to fail

Posterior Inferior Tibiofibular (PITFL)

- Originates on posterior tibial tubercle (Volkmann's)
- Inserts on posterior lateral malleolus
- Deep portion: runs transversely, stronger- 33% of stability
- Superficial portion runs obliquely from lat mal to tibia ("upward direction") 9% of stability
- Sup insertion of PITFL 15.2mm proximal to articular cartilage
- Strongest syndesmotic ligament

Transverse Tibiofibular

• Either separate ligament or deep component of PITFL (present as discrete structure in 70% of specimens)

II. High Ankle Sprains / Syndesmosis Injuries

Interosseous Ligament (IOL)

- Limits lateral translation
- Distal thickening of interosseous membrane
- Contributes 22% of stability
- Superior and inferior insertions of 31.8 and 9.2mm from distal articular cartilage

Biomechanics

- DF -> fibula ER, migrates proximally and posterolaterally
- PF -> fibular IR, migrates distally and anteromedially

Presentation

- Injury ER force applied to a DF ankle while foot is planted
- Difficulty weightbearing
- Ankle pain over syndesmosis > lateral joint
- Assess medial ankle and prox fibular tenderness to rule out Maissoneuve injury
- Swelling and ecchymosis may be minimal or late in presentation
- Assess deltoid ligament TTP or pain w/valgus stress
- Provocative testing
 - Squeeze test (above mid-point of calf)
 - External rotation (DF foot with knee flexed to 90)
 - \rightarrow anterior/posterior fibular translation and pain
 - Fibular translation test -> apply A-P force

- Indications of syndesmotic injury
 - Tibiofibular overlap
 - Measured 1 cm proximal to plafond on AP
 - normal AP >6 mm/42% fibular width; normal mortise >1 mm
 - Tibiofibular clear space
 - Measured 1 cm proximal to plafond on mortise
 - normal <6 mm in AP and mortise views
 - **most reliable indicator of syndesmotic injury
 - Medial clear space
 - Measured at level of talar dome on mortise
 - equal or less than superior clear space
 - Important to note that normal values do not preclude syndesmotic injury
 - External rotation stress/gravity stress
 - Rule out syndesmotic injury

Timothy O. White, Kate E. Bugler. Ankle Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

- Tibia films- if concerned for syndesmotic injury (Maissonueve)
- Advanced imaging
 - Consider MRI in equivocal cases

Non-operative

- Indications
 - syndesmotic sprain without diastasis/instability
- RICE
- WBAT vs NWB
 - CAM boot/cast (limits external rotation) until asymptomatic
- Therapy, strengthening, proprioception, limiting external rotation
- Recovery may take much longer than low ankle sprain

- Operative
 - Syndesmotic fixation: screws (static) vs. tightrope (dynamic)
 - Indications
 - Diastasis with/without fracture
 - Sprain that failed conservative management
 - Options
 - Direct versus indirect visualization
 - 1 screw vs 2 screws, 3 cortices vs 4 cortices, suture button alone, hybrid construct
 - Considerations
 - Screw removal
 - 10-12 wks after fixation
 - return to full play 4-8 wks after ROH

Timothy O. White, Kate E. Bugler. Ankle Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

<u>Outcomes</u>

• Return to play in elite athletes: high vs low ankle sprains

- Boytim et al AJSM 1991
 - NFL players- 15 syndesmotic sprains vs 28 lateral ankle sprains over 6 year period
 - Practice
 - Syndemosis = missed/limited 6.3
 - Low sprain = missed/limited 1.1
 - Games
 - Syndesmosis = missed 1.4 games
 - Low sprain = missed 0.04 games
 - Both significantly different

<u>Outcomes</u>

• Return to play in elite athletes: high vs low ankle sprains

- Wright et al. AJSM 2004
 - Retrospective review of Blues and Dallas Stars players between 1991 and 2001- 14 high ankle sprains and 5 lateral ankle sprains
 - Initial treatment = WBAT
 - Exception: 1 who had syndesmosis screw fixation due to mortise diastasis on stress view c subsequent screw removal at 6 weeks and RTP at 137 days
- Return to game time
 - High ankle sprains = 45 days (range: 6-137 days)
 - 38 days if exclude surgical stabilization patient
 - Low ankle sprains = 1.4 days (range 0-6 days)
- No player sustained subsequent injury of other type
- Rigid hockey skate and decreased impact loading with skating compared to running appears to offer advantage to low ankle sprains but not to syndesmosis sprains as syndesmosis injuries represented 74% of all ankle sprains and NHL league wide database has 50% of all ankle sprains

II. High Ankle Sprains / Syndesmosis Injuries

III. Achilles Tendon Rupture

Acute Rupture

- Mechanism: traumatic, sport injuries; reported 'pop'
 - Sudden forced plantarflexion (PF)
 - Acute dorsiflexion (DF) from plantarflexion
- Demographics: male, ages 30-40
- Risk factors:
 - 'Weekend warriors' / recreational athletes
 - Fluoroquinolone antibiotics
 - Steroid injections

- Confluence of soleus tendon + medial and lateral gastrocnemius tendons
- Blood supply: posterior tibial artery
- Rupture typically at 4-6cm above calcaneal insertion (hypovascular)

III. Achilles Tendon Rupture

Evaluation

• Exam:

- Weakness walking, heel pain
- Increased resting ankle DF when prone with knees bent
- Palpable gap
- Weakness to active PF, increased passive DF

• THOMPSON TEST:

• Lack of PF when examiner squeezes calf

III. Achilles Tendon Rupture

Evaluation

• Imaging:

- XRs: rule out any other injuries
- US: to determine complete vs partial ruptures
- MRI: for equivocal exam / chronic injuries; assess retraction

III. Achilles Tendon Rupture

• GOALS:

- restoration of physiologic tendon length and tension
 - maximize strength and function
- Return to work / activity

<u>Management</u>

• Nonop:

- Functional bracing / early range of motion protocols
 - Short period of immobilization followed by early ROM and progressive WB
 - Outcomes:
 - Equivalent PF strength compared to operative
 - With **functional rehab**, similar risk of re-rupture (~equivalent to operative mgt)
 - Fewer complications (ex. Risk of rerupture, skin infection / impaired wound healing and nerve complications)
 - Historical 'nonop' = immobilized in cast 6-8weeks → higher rate of re-rupture compared to operative (12.6% v 3.5%)
 - Newer studies show re-rupture rates ~3-5% with early functional rehab

<u>Management</u>

• Nonop:

- Functional bracing / early range of motion protocols
 - Typical protocol:
 - Initial immobilization x1-2 weeks
 - Transition to controlled ankle motion (CAM) walker + progressive stretching and resistance training
 - Permissive WB
 - RCTs show improved ankle ROM, decreased stiffness, better health-related QoL (but no effect on rerupture, functional outcomes or biomechanical tendon properties)
 - No difference in heel-rise work (PF strength), or rate of re-rupture at 1 year
 - Those with earlier WB had improved health-related QoL scores at 1yr FU

• Nonop:

• Functional bracing / early range of motion protocols

- Functional rehab versus surgical repair
 - Lower complication rates in nonop vs op
 - With operative fixation, 12.5% risk of complications
 - Superficial + deep infection, hypertrophic scar, tendon tethering, wound dehiscence (Willits et al., 2010)
 - No clinically important LT (>1yr) outcome differences re:
 - Ankle ROM
 - Strength
 - Calf circumference
 - Functional outcome scores (*some studies show improved ST function (6mos) that becomes negligible at 1yr)
 - Surgical treatment may lead to improved return to work, PF strength (questionable clinical relevance)
 - Meta-analysis by Soroceanu et al. (2012)
 - Willits et al. (2010), showed small yet statistically significant increase in PF at 1-2 years postop
 - Caveat: existing RCTs comparing surgical + nonsurgical
 - Lack adequate power

III. Achilles Tendon Rupture

<u>Management</u>

• Nonop:

- Functional bracing / early range of motion protocols
 - Functional rehab versus surgical repair
 - Risk of re-rupture often correlated to patient compliance, often occur earlier in treatment
 - Long-term re-rupture (i.e. up to 2 yrs) quoted at 2.8% (Wallace et al., 2011)
 - Low nonoperative risk profile (Wallace et al., 2011)
 - Heel pain (2.2%)
 - Numbness (0.7%)
 - DVT (1.1%)
 - PE (0.2%)
 - Orthosis-related discomfort (0.4%)
 - One study show skin-related complications with nonremovable dynamic orthosis (31.7% v 4.7% post-MIS surgical repair)

III. Achilles Tendon Rupture

• Nonop:

• Functional bracing / early range of motion protocols

• Ex: Willits et al., 2010 - functional rehab protocol post surgical OR nonsurgical mgt

PostOp / Injury week	Protocol
0-2	 Posterior slab/splint NWB with crutches when surgical OR immediately after injury when nonop
2-4	 CAM boot with 2cm heel lift Protected WB with crutches Active PF and DF to neutral; inversion / eversion below neutral Swelling control Incision mobilization PRN Knee/hip exercises without ankle involvement NWB fitness / CV exercises hydrotherapy
	III. Achillos Tondon Punturo

III. Achilles Tendon Rupture

• Nonop:

• Functional bracing / early range of motion protocols

• Ex: Willits et al., 2010 - functional rehab protocol post surgical OR nonsurgical mgt

PostOp / Injury week	Protocol
4-6	WBATContinue protocol from wk 2-4
6-8	 Remove heel lift WBAT Slow DF stretching Graduated resistance (open + closed kinetic chain exericises + functional activities) Proprioceptive + gait training Ice, heat, + US therapy PRN Incision mobilization PRN Fitness / CV exercises with WBAT
OA	III. Achilles Tendon Rupture Core Curriculum V5

• Nonop:

• Functional bracing / early range of motion protocols

• Ex: Willits et al., 2010 - functional rehab protocol post surgical OR nonsurgical mgt

PostOp / Injury week	Protocol
8-12	 Wean out of boot Return to crutches +/- cane PRN, then gradually wean Continue to progress ROM, strength + proprioception
12+	 Continue to progress ROM, strength and proprioception Retrain strength, power + endurance Increase dynamic WB exercises (include plyometrics) Sport-specific retraining

III. Achilles Tendon Rupture

• Nonop:

• Functional bracing / early range of motion protocols

• Ex: Willits et al., 2010 - functional rehab protocol post surgical OR nonsurgical mgt

PostOp / Injury week	Protocol
8-12	 Wean out of boot Return to crutches +/- cane PRN, then gradually wean Continue to progress ROM, strength + proprioception
12+	 Continue to progress ROM, strength and proprioception Retrain strength, power + endurance Increase dynamic WB exercises (include plyometrics) Sport-specific retraining

III. Achilles Tendon Rupture

• Operative:

- a) Open end-to-end repair (acute <6 wk)
- b) Percutaneous repair
- c) Reconstruction with VY advancement
- d) FHL transfer +/- VY advancement of gastroc

<u>Management</u>

a) Open end-to-end repair

- Indications: acute ruptures (<6 weeks)
- Incision: posteromedial incision
 - Medial to AT to protect sural nerve
 - Vascular mapping shows least amount of vascularization of skin and subcut tissue directly posteriorly; best between axis of medial mal and medial border of AT (Yepes et al., JBJS 2010)
 - Similar wound complications to midline (7% posteromedial; 8.3% for midline)
 - Risk factors: smoking, steroid use, female sex
- <u>Technique</u>: incise paratenon, expose tendon edges, repair with heavy nonabsorbable sutures

a) Open end-to-end repair

- Variation = limited open repair
 - Combined open and perc technique to allow surgeon to visualize tendon ends
 - Small incision over site of AT repair and perc suture repair
 - Vertical posteromedial incision over rupture to be extended proximally or distally as needed
 - Suture repair placed deep to paratenon to protect sural nerve

III. Achilles Tendon Rupture

<u>Management</u>

b) Percutaneous AT repair

- Some studies point to higher risk sural nerve damage (entrapment) vs. open
 - must protect through medial + lateral incisions proximally
- Lesser risk wound complications / infections vs. open
 - No postop wound infections v 21% infection rate in open (Lim et al.)
 - Some concern for wound puckering (9%), adhesions (6%) in percutaneous
- No difference in... (vs. open)
 - re-rupture rates
 - Return to work
 - Clinical outcomes: PF strength, ROM, calf / ankle diameter or single heel-raise testing

c) Reconstruction with VY advancement

- When defect <3cm (chronic)
- Technique:
 - V cut at apex of musculotendinous junction
 - Leave muscle fibers intact

d) FHL transfer +/- VY advancement

- Indications: chronic ruptures with defect >3cm
 - Need tibial nerve to be intact
- Technique: excise degenerative tendon edges, release FHL at Knot of henry and transfer through calc
 - Some residual PF weakness at hallux

Postoperative protocol: functional rehab (same as nonop)

- Variations in WB vs NWB
 - Often 2 week period of NWB to allow for soft tissue healing
 - Transition to removable CAM walker, transition to WBAT and functional rehab

III. Achilles Tendon Rupture

Biologic adjuncts

No level I evidence to suggest improvement

- Some studies in athletes show faster recovery ROM and return to sports in PRP, though no difference at 1yr
- Stem cells no clinical translational data

III. Achilles Tendon Rupture

SUMMARY

AAOS Clinical Practice Guidelines (2010)

- RECOMMENDATION 1:
 - Physical exam should include 2+ for dx (consensus)
 - Clinical Thompson test
 - Decreased ankle PF strength
 - Presence of palpable gap
 - Increased passive ankle DF

- RECOMMENDATION 2:
 - Unable to recommend for or against MRI/US and xray (inconclusive)
- RECOMMENDATION 3:
 - Nonsurgical treatment is an option (weak)
- RECOMMEDATION 4:
 - When treated nonsurgically, unable to recommend for or against immediate functional bracing (inconclusive)

SUMMARY

AAOS Clinical Practice Guidelines (2010)

- RECOMMENDATION 5:
 - Surgical treatment is an option in patients with acute AT rupture (weak)
- RECOMMENDATION 6:
 - In absence of reliable evidence, although surgical treatment is an option, should be approached cautiously in setting of patients with...(consensus)
 - DM / neuropathy
 - immunocompromised states
 - ages >65 years
 - Smokers
 - Sedentary lifestyle
 - Obese (BMI >30)
 - PVD
 - Local/systemic dermatologic disorders

III. Achilles Tendon Rupture

- RECOMMENDATION 7:
 - When treated surgically, unable to recommend for or against pre-surgical immobilization or restricted WB (inconclusive)
- RECOMMENDATION 8:
 - Open, limited open and percutaneous techniques are options for management of acute AT rupture (weak)
- RECOMMENDATION 9:
 - Cannot recommend for / against allograft, autograft, xenograft, synthetic tissues, or biologic adjuncts in surgical management

III. Achilles Tendon Rupture

- RECOMMENDATION 10:
 - Cannot recommend for/against use of antithrombotic treatment (inconclusive)
- RECOMMENDATION 11:
 - Suggest early (</= 2 wk) postop protected WB (limited DF) for those with acute AT rupture treated surgically (moderate)
- RECOMMENDATION 12:
 - Suggest use of protective device allowing mobilization by 2-4 wks postop (moderate)

- RECOMMENDATION 13:
 - Unable to recommend for/against postop physical therapy for acute AT rupture (inconclusive)
- RECOMMENDATION 14:
 - Irrespective of treatment type, unable to recommend specific time to return to ADLs (inconclusive)
- RECOMMENDATION 15:
 - For those who participate in sports, option to return to sport at 3-6months after surgical treatment of acute AT ruptures (weak)

III. Achilles Tendon Rupture

- RECOMMENDATION 16:
 - With acute AT rupture treated nonsurgically, unable to recommend timeframe to return to athletic activity (inconclusive)

III. Achilles Tendon Rupture

IV. Peroneal Tendon Injuries

Anatomy

• Peroneus Longus (PL)

- Innervated by SPN
- Role: plantar flexion of foot + 1st MT
- May have os peroneum within the tendon body at CC joint
- At level of peroneal tubercle of calc, PL is **INFERIOR**
 - Covered by inferior peroneal retinaculum

• Peroneus Brevis (PB)

- Innervated by SPN
- Role: primary evertor of foot
- Tendinous 2-4cm proximal to tip of fibula
- Anterior and medial to PL at level of lateral mal
- At level of peroneal tubercle of calc, PB is **SUPERIOR**
 - Covered by inferior peroneal retinaculum

IV. Peroneal Tendon Injuries

<u>Anatomy</u>

- Contained within synovial sheath split at level of peroneal tubercle
 - Within retromalleolar groove in fibula
 - PL is **POSTERIOR** in sulcus
 - PB is ANTERIOR in sulcus
 - Covered by superior peroneal retinaculum (SPR)
 - From fibula inserting onto peroneal tubercle of calc
 - Primary restraint of tendons within retromalleolar sulcus
 - Degree of tearing of SPR determines grade of injury, and subluxation of tendons
 - Inferior peroneal retinaculum cover tendons at level of tubercle
- Vascular supply: branches of anterior and posterior tibial arteries
 - Entirety of tendons vascularized

IV. Peroneal Tendon Injuries

Mechanism of Injury

- Spectrum of injuries: often longitudinal in young athletes
 - Tenosynovitis
 - Tendinopathy
 - Tendon tears
 - Tendon instability

Mechanism of Injury

- Rapid forced DF of inverted foot
 - Report 'pop'
 - Most often longitudinal tear in PB
- Instability of tendons occurs when superior peroneal retinaculum tears
 - Subluxation
 - Dislocation

Presentation

- C/O lateral / posterolateral ankle pain (towards fibular tip)
- Worsened with active eversion / PF; or passive DF
- Exam:
 - Swelling posterior to lateral mal
 - Tender over tendons
 - +/- cavovarus alignment
 - +/- popping with subluxation of tendons
 - TESTS:
 - **Apprehension**: sensation of subluxation / discomfort with active DF + eversion against resistance
 - **Compression**: pain w/passive DF + eversion
 - Active circumduction: recreates instability of tendons
 - Ankle drawer test: for other ligamentous instability

IV. Peroneal Tendon Injuries

Imaging

- X-Rays: Weightbearing if possible
 - +/- Harris to assess tubercle
 - +/- 'fleck sign' = cortical avulsion off of distal tip of lateral mal (SPR avulsion)
 - Assess for cavovarus foot
- U/S: for suspicion of tears / instability
 - Dynamic: for assessment of tendon subluxation

IV. Peroneal Tendon Injuries

Imaging

- **CT**: unique situations...
 - for calc malunion / lateral wall impingement
 - For retromalleolar groove abnormality / enlarged tubercle
- MRI: for suspicion of tears / instability or other pathology (ATFL / CFL insufficiency, talar osteochondral injuries, etc.)
 - Tendons best assessed with ankle in PF (axial cut)
 - Look for
 - edema, tendon thickening (tendinopathy)
 - Circumferential fluid within sheath (tenosynovitis)
 - Intra-substance tears
 - Fatty infiltration into muscle belly
 - Accessory tendons / low lying PB belly

<u>Classification of injury patterns</u>

- Anatomic classification of SPR tears
- Raikin classification of intra-sheath subluxation of tendons
- Peroneal Tendon Tears
 - Type I: both intact, partial tearing
 - Type II: one torn, other inact
 - Type IIIa: both mostly torn but muscle belly has no excursion
 - Type IIIb: both mostly torn, with excursion of muscle belly

Treatment

• Nonop:

- Activity modification +/- boot immobilization \rightarrow PT
 - First line for PB/PL tendinopathy, tenosynovitis + tears
 - Begin PT when pain resolved
 - Consider shoe orthosis for any hindfoot / forefoot varus
- Immobilization (SLC) and protected WB x 6 weeks
 - All acute PB/PL instability in nonprofessional athletes
 - High failure rates (>80%) for tendon tears
 - Ensure tendons reduced and maintained (foot in slight PF, inversion)

Treatment

• Operative:

1. Repair SPR and deepening of retromalleolar groove

- Indications:
 - Acute tendon dislocations in high level athletes
 - Longitudinal tear

2. Groove-deepening + soft tissue transfer +/- osteotomy

- Indications: chronic / recurrent dislocations w/bony abnormalities
- OR incompetent SPR

3. Tenosynovectomy + tendon debridement w/ or w/o tubularization

- Indications: recalcitrant PB/PL tears <50-60% of width of tendon
- 4. Debridement of tendon, tenodesis of distal + proximal ends of PB to PL
 - Indications: complex tears, significant tendinosis (>50%)
- 5. Debridement of tendons, interposition auto- or allograft
 - Indications: complex tears (>50%) with preserved muscle excursion
- 6. Debridement of tendons, FHL/FDL transfer
 - Indications: same as above without muscle excursion

+ Hindfoot corrective osteotomy

Indication: when any rigid hindfoot-driven varus/valgus

IV. Peroneal Tendon Injuries

V. Anterior Tibial Tendon Injuries

<u>Anatomy – tibialis anterior</u>

- Primary ankle dorsiflexor
- Secondary ankle dorsiflexors:
 - EHL
 - EDL

V. Anterior Tibial Tendon Injuries

Mechanism of Injury

Laceration

- Closed rupture
 - Strong eccentric contracture

- Risk Factors:
 - DM
 - Inflammatory arthritis
 - Older (often attritional)
 - Fluoroquinolone use
 - Local steroid injection

Presentation

- Acute injury: reports 'pop', pain and anterior ankle swelling
- Chronic injury: foot drop / difficulty lifting toes to clear for gait
 - May be painless

V. Anterior Tibial Tendon Injuries

Examination

- Pain + swelling in anterior ankle
 - If chronic, may palpate mass at anteromedial aspect of ankle
 - Lack of palpable tendon
- Weakness in DF of ankle
 - May have intact DF with secondary ankle DFs
- Steppage gait: hip flexed in swing phase, foot slaps after heel strike

- To rule out:
 - L4 radiculopathy: differentiate from TA rupture by...
 - Intact palpable tendon
 - No ankle mass
 - Dermatomal abnormalities
 - Spine MRI findings
 - CPN compression neuropathy: differentiate from TA rupture by...
 - EDL + EHL affected
 - Sensory abnormalities
 - Compression history at level of CPN

Imaging

- XR: 3 views of ankle to rule out acute osseous injury
- MRI: to assess if complete / partial

V. Anterior Tibial Tendon Injuries

Management

- Nonoperative:
 - AFO: low demand patient
 - Casting: partial ruptures
- Operative:
 - **1. Direct repair**: use laceration OR longitudinal incision over palpable defect; primary end-to-end repair
 - Indications: acute (<6 week 3 months) in active, high demand patient
 - NOTE:
 - if <5° ankle DF with knee extended, need to perform gastroc recession PRIOR to tensioning repair
 - Oversew ends with monofilament layer if frayed to create smooth gliding surface
 - If avulsed, use bone tunnels / anchors
 - 2. Reconstruction: various options
 - Indications: chronic injuries
 - EHL tenodesis or EHL transfer (distal EHL stump tenodesed to EHB, proximal stump used as graft to repair TA insertion)
 - Sliding tendongraft: harvest ½ width TA tendon proximally, turn down to span gap; strengthen by securing tendon to medial cuneiform or dorsal navicular
 - Free interpositoinal autograft / allograft

V. Anterior Tibial Tendon Injuries

<u>Summary</u>

- Detailed knowledge of foot and ankle anatomy is key to the diagnosis of ligamentous injury
 - Informs physical exam findings to lead you to diagnosis
- Imaging work up should start with weight bearing films whenever possible
 - Advanced imaging with MRI is helpful in equivocal or refractory cases
- Most ligamentous injuries can be treated nonoperatively

- Nonoperative treatment of achilles tendon ruptures with early functional rehab has equivalent functional outcomes to operative repair but may have a higher rerupture rate
- Consider early acute repair of extensor or evertor tendon injuries in high demand patients

Key References

- Handoll HH, Rowe BH, Quinn KM, de Bie R. Interventions for preventing ankle ligament injuries. Cochrane Database Syst Rev. 2001;(3):CD000018. doi: 10.1002/14651858.CD000018. PMID: 11686947.
- Zhang P, Liang Y, He J, Fang Y, Chen P, Wang J. A systematic review of suture-button versus syndesmotic screw in the treatment of distal tibiofibular syndesmosis injury. BMC Musculoskelet Disord. 2017 Jul 4;18(1):286. doi: 10.1186/s12891-017-1645-7. PMID: 28676078; PMCID: PMC5496349.
- Willits K, Amendola A, Bryant D, Mohtadi NG, Giffin JR, Fowler P, Kean CO, Kirkley A. Operative versus nonoperative treatment of acute Achilles tendon ruptures: a multicenter randomized trial using accelerated functional rehabilitation. J Bone Joint Surg Am. 2010 Dec 1;92(17):2767-75. doi:
- Zhou K, Song L, Zhang P, Wang C, Wang W. Surgical Versus Non-Surgical Methods for Acute Achilles Tendon Rupture: A Meta-Analysis of Randomized Controlled Trials. J Foot Ankle Surg. 2018 Nov-Dec;57(6):1191-1199. doi: 10.1053/j.jfas.2018.05.007. PMID: 30368430.
- Kou J. AAOS Clinical Practice Guideline: acute Achilles tendon rupture. J Am Acad Orthop Surg. 2010 Aug;18(8):511-3. doi: 10.5435/00124635-201008000-00008. PMID: 20675644.

