Biomechanics of Fractures and Fixation

Michael S. Kain MD

Assistant Professor

Boston University School of Medicine

Boston Medical Center

NOTE: all images are c/o Michael Kain MD unless otherwise specified

- Basic Biomechanics
- Biomechanics of Fractures
- Bone Healing
- Fixation Strategies
- Constructs

Introduction

- Fracture Fixation is a *balance* of **Biology** and **Mechanics**
- <u>Race</u> between Bone Healing and Construct Failure
- Promote bone healing while considering the mechanical stability/durability of the fixation construct
 - *Example:* Cast is less stable than a LCDCP plate but does not disrupt the normal bone healing biology
- "Paradox of Internal Fixation"
 - The dichotomy of invasiveness of fixation vs normal bone healing

Introduction

- "Paradox of Internal Fixation"
 - The dichotomy of invasiveness of fixation vs normal bone healing

Carpentry vs Gardening

Introduction

• Balancing of principles:

Create enough rigidity to allow for function; yet have enough flexibility and a normal biologic environment to allow for and promote bone to return to its normal biomechanical state.

BASIC BIOMECHANICS

Mechanical Concepts

- Mechanical Competence of Bone relies on
 - Material properties
 - No consideration to geometry
 - Independent of shape
 - Elastic–Plastic, Yield Point, Brittle-ductile, Toughness
 - Structural properties
 - Considers geometry and material
 - Dependent on shape & material
 - Bending, Torsional, and Axial Stiffness

MATERIAL PROPERTIES

- Stiffness regardless of specimen size
 - Stress (σ) = Force/Area
 - Strain (ϵ) = Change in Height (Δ L) / Original Height (L_0)
- Elasticity (Young's Modulus or E modulus)
 - E= (σ) / (ε)
- Strain expressed without units
- Stress and E modulus expressed as Gigapascals
 - Example stainless steel (E=200 GPA) 2x Titanium

Compressive Strength

Strain (ε) =

Change in Height (ΔL)

From: 1 Biomechanics of Fractures and Fracture Fixation

Rockwood and Green's Fractures in Adults, 9e, 2019

Orginal Height (L₀**)**

Compression of a cylindrical specimen of trabecular bone.

Material Properties : Definitions

- E- modulus: defines the elasticity of the material, complete reversal of deformation is still possible
- **Yield strength**: point where permanent elastic deformation occurs
- **Ultimate Strength**: the point where material fractures

Material Properties : Definitions

- **Ductile** describes a material with lots of elasticity and the ability to deform
- **Brittle** describes a material with small amount of elasticity and has little ability to deform
- Fatigue Failure occurs from repetitive loading below ultimate strength limit and microfractures occur
- Fatigue Limit is the maximal load that will not cause a microfracture

Common Materials in Orthopaedics

• Elastic Modulus (Gpa)

Material	Young's Modulus (GPa)	Yield Strength (MPa)	Ultimate Strength (MPa)	Failure Strain (%)
UHMW polyethylene (arthroplasty)	0.9	25	40	5
Ligament (in tension)	1.5	60	100	15
PMMA (bone cement)	3	74	74	2
Cortical bone (in compression)	17	200	200	1
Titanium alloy	110	800	860	10
Stainless steel	200	700	820	12

Rockwood and Green table 1-1

From: 1 Biomechanics of Fractures and Fracture Fixation

Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Common Materials in Orthopaedics

• Elastic Modulus (GPa)

Material	Young's Modulus (GPa)	Yield Strength (MPa)	Ultimate Strength (MPa)	Failure Strain (%)
UHMW polyethylene (arthroplasty)	0.9	25	40	5
Ligament (in tension)	1.5	60	100	15
PMMA (bone cement)	3	74	74	2
Cortical bone (in compression)	17	200	200	1
Titanium alloy	110	800	860	10
Stainless steel	200	700	820	12

Rockwood and green table 1-1

Material Properties

- Anisotropic: direction-dependent mechanical properties of a material
 - Bone: a transversely anisotropic material
- Isotropic: no change in properties regardless of load direction
 - Stainless Steel and Titanium
- **Viscoelastic:** is time dependent deformation, and stiffness increases with faster loading
 - Gradual deformation is <u>creep</u>

Material Properties

Anisotropy vs Viscoelasticity

Most biologic tissues are composed of multiple components, organized in a structurally optimized microstructure.

Figure From: 1 Biomechanics of Fractures and Fracture Fixation

Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Structural Properties

- Material Properties and the shape and size of the object
- In Fracture Management think about both size and shape of 2 objects:

1. Bone

- **2. Fixation Device**
- Bending Stiffness of Plate: collinear with width but 1/3 thickness
- Bending of K-wire: increases by the 4th power so doubling is 16 fold increase

Orthopaedic Implants

- Plates: think about width, thickness, and length
- Wires/Pins: diameter, solid
- Nails: Hollow so they are lighter but maintain strength,

ideal weightbearing

Influence of cross-sectional geometry on bending stiffness for basic implant shapes.

From: 1 Biomechanics of Fractures and Fracture Fixation

Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

• Vectors: Force and Direction

• Rotational Moments (M):

• Created by the Force (F) and distance (d)

• Lever arms: example of Seesaw

• Vectors: Force and Direction

• Rotational Moments (M):

Created by the Force (F) and distance (d)

• Lever arms: example of Seesaw

Core Curriculum V5

Lever Arms

• Examples of Lever Arms

➢Seesaw

≻Arm

➢Plate length

From: 1 Biomechanics of Fractures and Fracture Fixation

Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

BIOMECHANICS of FRACTURES

Bone Biomechanics

- Bone is *anisotropic* material: direction of load matters
- Bone is viscoelastic: Trabecular bone becomes stiffer with compression
- Bone Properties: <u>weakest in Shear</u>

Bone Biomechanics

• Diaphyseal Bone: has hollow cylinder properties

- Density of Bone
- Cortical = Trabecular Bone
 - Cortical Bone is less porous
 - Trabecular Bone is more porous
 - Porosity affects the stiffness and strength of trabecular bone

Traumatic Loading of Bone

- Fracture is a result of the *bone being loaded to failure*
 - Magnitude and Direction of the Force vary
 - Different Patterns associated with different Magnitudes and Directions: different bones fail differently
 - Examples:
 - Transverse Patella fx = Tension failure
 - Vertebral body= Compression failure

Tibia= Torsional Failure

Types of Fractures

- Transverse: Force is *Perpendicular* to long axis of bone
- Spiral Fractures: *Torsional* Forces
- Oblique: Force is *Diagonal* to axis of bone
 - 3 types: Axial, Bending & Axial, Torsional & Bending
- Butterfly: combination of *Bending Force* and *Compression Force*
- •
- Comminuted: Force *High Energy*

Types of Fractures

From: **1 Biomechanics of Fractures and Fracture Fixation** Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Osteoporosis-Biomechanical Considerations

- Trabecular Bone more Porous
- Density of bone affects Trabecular Bone
- A Small Decrease in Density weakens Trabecular Bone

- <u>2 Biomechanical Challenges</u>
 - Risk of fracture from daily activities
 - Poor/Limited ability to obtain fixation in weakened bone

Osteoporosis:

- Definition of Osteoporosis: bones become brittle and fragile from loss of tissue, typically as a result of hormonal changes, or deficiency of calcium or vitamin D
- Fracture resistance of osteoporotic bone is a function of the 3rd power of the Bone Mineral Density (BMD)
- See Cortical Bone thinning becomes trabecular bone

Stress Risers:

- A defect in bone or sudden change in STIFFNESS results in a STRESS riser
 - Periprosthetic Fractures
 - Interprosthetic Fractures
 - Peri-implant Fractures
 - Bone Defects

Periprosthetic Fractures

- Low energy
- Vancouver A = torsional forces
- Vancouver B & C = bending forces

The presence of a hip prosthesis (THA) decreases the strength of the femur by 32%

A loose implant increases risk of PPFx, particularly in torsion

Interprosthetic Fractures

- Factors and Risk of Fracture
 - Distance between Implants (? 110mm)
 - Cortical Thickness
 - Loose Prothesis or Implant

Peri-Implant or End Screw Fractures

- Risk lower in nonlocked screws (1-3%)
- Increased for locked screws (2.6%) increased stiffness
- Unicortical screws lower the strength of bone compared to bicortical
- Angled screws at the end may decrease pullout and fracture risk
- End Dual plating constructs at different levels (create overlap)

Loads required to cause a femur fracture

From: 1 Biomechanics of Fractures and Fracture Fixation

Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Core Curriculum V5

Force to failure (N)
Bone Defects

- When plates and screws removed, risk of fracture increases
- Bending and torsional forces cause risk
- No increased risk with defect less than 10% diameter
- 10%-20% defect: 34% decrease in bone strength
- 20%-60% defect: linear decrease in relation to the size

From: 1 Biomechanics of Fractures and Fracture Fixation

Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

BONE HEALING AND BIOMECHANICS

Bone Healing and Biomechanics

- Biology and Mechanics
- 2 Types of healing for bone
 - Natural Bone Healing
 - Secondary or Endochondral Bone formation
 - 4 stages (Hematoma / Soft Callus / Hard callus / Remodeling)
 - Relative Stablility
 - EX: Intramedullary nailing
 - Primary Bone Healing
 - Cutting Cones
 - No Callus
 - Absolute Stability
 - Ex: Compression plating

Natural Bone Healing

• Ultimate Tensile Strength Increases with time

From: **1 Biomechanics of Fractures and Fracture Fixation** Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Stages of Natural Healing

- Hematoma: fibrin clot
- Soft Callus: granulation tissue to stabilize and allow cartilage
 - Volume of tissue creates stability
- Hard Callus: calcification of cartilage
 - The end of healing when hard callus forms
- **Remodeling:** decreased motion = more mature lamellar bone
 - Volume of material decreases

Natural Bone Healing

- Optimal interfragmentary motion is 0.2 1 mm ullet
- More motion increases healing
- Large gaps heal slowly, less callus
- Healing occurs peripherally (periosteal callus) •
- Goal is axial motion

Primary Bone Healing

- Creates stability through anatomic reduction
- Compression of fragments
- Immediate STABILITY as no intermediate tissue
- Interfragmentary motion < 0.15 mm
- No gaps (minimize)
- SLOWER process

Primary Bone Healing

- Cutting Cones: osteoclasts cut across fracture, allow for osteoblasts
- Gap healing: lamellar bone perpendicular to axis of fracture to allow for cutting cones
- SLOWER PROCESS
- PLATE Fixation
- Plates should be on for 2 years

Nonunion / Delayed Union

- Unstable
 - Hypertrophic Nonunion
 - Delayed Unions
 - Large Cartilage Mass
 - Motion > 1mm

• Stiff

- Atrophic nonunions
- Stiff + Gap is bad
- No callus
- No cutting cones

FIXATION STRATEGIES

Fixation Strategies

- Mechanical environment dictates mode of healing
- Patient factors to consider
 - Bone quality
 - Fracture type
 - Comminution
 - Location

Natural Bone Healing Fixation Devices

- Casts
- Fracture Bracing
- Intramedullary Nail
 - External Fixation
- Flexible Nail Constructs
- Flexible Plate Constructs

Create enough stability to initiate the process otherwise: Too little creates Nonunion Core Curriculum V5

Primary Bone Healing Strategies

- Compression plating
- Locked plating
- Less forgiving
- Anatomic reduction required
- Intra-articular fractures

Is the Construct Durable?

The construct has to hold up mechanically until

fracture consolidation occurs

- Constructs need to focus on:
 - Minimizing stress concentration
 - Maximizing working length

Minimize Stress Concentrations

- Load distribution
 - Large spread
 - Long and multiple screws in metaphysis

- Reduce stiffness gradients
 - Angled screws at the end of plate
- Prevent preloading
 - Lag before locking

Maximize Working Length

- Large distance between fixation points
 - Number of screws less important than distance
 - Add screws if osteoporotic
- Create long lever arms
- Near-far fixation points

FIXATION CONSTRUCTS

Fixation Constructs: Operative

External Fixation

•Plates

Intramedullary Nails

- Consider Factors
 - Pin size
 - Number of pins
 - Uniplanar vs multiplanar
 - Spacing of pins
 - Location of the bars
 - Biology: stay out of the zone of injury

- Consider Factors
 - Pin size
 - Number of pins
 - Uniplanar vs multiplanar
 - Spacing of pins
 - Location of the bars
 - Biology: stay out of the zone of injury

- Consider Factors
 - Pin size
 - Most significant factor for frame stability

Thickness of pin increases the strength (R^4)

Doubling the diameter 1mm to 2mm will increase strength by 16 fold

B is 16x stronger than A

- Consider Factors
 - Pin size
 - Number of pins

More pins in the segment = more stable Minimum number of 2 pins required

- Consider Factors
 - Pin size
 - Number of pins
 - Uniplanar vs multiplanar

Core Curriculum V5

 Adding pins in multiple planes will also increase the stability of the segment

- Consider Factors
 - Pin size
 - Number of pins
 - Uniplanar vs multiplanar
 - Spacing of pins

One pin close to the fracture and one further from fracture Same concept as working length

- Rod (red)
- IN-line and as close to bone

- Optimize frame mechanics
 - Largest possible pin diameter
 - Large spread
 - If more stability, add pins
 - Multiple planes
 - Minimize distance from bone to rod
 - Stack the frame
 - Make a Short / Fat / Box

Intramedullary Nails

- Load sharing implant
- Modern nails are hollow (older nails slotted)
 - Lighter
 - Stronger in bending
 - Stiffness proportional to the 4th Power
 - Increased torsional strength

Intramedullary Nails

- Stiffness of nails
 - Material
 - Location of fracture
 - Interlocking technique
 - Unlocked
 - Locked
 - Blocking screws

Plate and Screw Fixation

- Screws
 - Cortical
 - Cancellous
 - Cannulated
 - Locking Screws
- Conventional Plates
- Locking Plates

Screws

- Anatomy of a Screw
 - Head
 - Thread Height Z
 - Inner (Core) Diameter -X
 - Outer(Thread) Diameter-Y
 - Pitch (P)

Ρ

Screws

- Cortical Screws
 - Smaller pitch
 - Smaller thread height
- Cancellous Screws
 - Larger pitch
 - Larger thread height
 - Smaller core diameter
 - Larger pitch

Ρ

Screws

- Cannulated Screws
 - Wide core diameter
 - Better in bending
 - Decreased pitch
 - Decrease thread height
 - Lower pullout strength

- Generate torque
- Compress bone
 - Lag by technique
 - Lag by design
- Compress plate to bone
- If locked into plate: Bicortical to disperse forces
 - Stiffer

Plate Fixation

- Compression
- Neutralization

- Buttress
- Anti-Glide

• Relies on friction between plate and bone

Plates

Bending stiffness of plate

• Thickness to the 3rd power

• I= bh³ / 12

• Much harder to bend and contour a thicker plate

Plates

- Gaps are bad
 - Prevents primary healing
 - Allows for fatigue failure (bending)
 - Healing prevents fatigue failure

OA

• Screws compress plate to bone

Plates

- Compression of fracture
- Maintenance relies on pullout strength of <u>screws</u>

Locking Plates

- Many fixed-angle points of fixation
- Internal external fixator
- Dose not rely on friction
- Can't not gap
- Lag prior to locking

Comparison

Core Curriculum V5

Locked Plating

- Hybrid screw fixation
- Pre-contoured plates
- Lag prior to locking, compress plate to bone
- Lock after Lagging and reducing fracture
- Do NOT lock in a GAP \rightarrow NONUNION machine

Hybrid fixation

- Mix of non-locked and locked screws
- Lag prior to locking
- Locking screw at end of plate increases fixation

Summary

- Balance biology and mechanics
- Geometry and material matter affect stiffness of construct
- Load transfers based on vectors and lever arms
- AVOID shear and promote compression
- Lag prior to locking
- Manage stiffness based on type of bone healing
- Minimize stress risers
- Maximize working length

Annotated References

- Bong MR, Kummer FJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg. 2007 Feb, 15(2):97-106
- Rockwood & Green Fractures in Adults, 9E, 2019. Chapter 1, Biomechanics of Fractures and Fracture Fixation
- Toan Le, Theodore, OTA CORE CURRICULULM VERSION 4
- Rupprecht M, et al. Biomechanical Evaluation for Mechanisms of Periprosthetic Femoral Fractures. Journal of Trauma. Vol 70, N4, April 2011
- Peck JB, Charpentier PM, Flanagan BP, Srivastava AK, Atkinson PJ. Reducing Fracture Risk Adjacent to a Plate with an Angled Locked End Screw. J Ortho Trauma, Vo 29, N 11,p431 436- Nov 2015,

