Subaxial Cervical Spine Trauma

Pooria Salari, MD
Assistant Professor Of Orthopaedics
Department of Orthopaedic Surgery
St. Louis University School of Medicine
St. Louis, Missouri, USA
Initial Evaluation

A, B, C: Airway, Breathing, Circulation

- Control Airway
- Stabilize & Immobilize Neck
- Nasal or Fiber Optic Intubation
Physical exam

- Palpation
 - Neck pain
 - 84% patients with a clinical exam and fracture have midline neck pain
 - Step off between spinous processes
 - Crepitus
- Range of motion
- Detailed neurologic exam (RECTAL!)
Radiographic Evaluation

- Lateral C-spine to include C7-T1
- BEWARE with changing standards (most centers get CT)
- Bony anatomy
- Helpful to have baseline XR for comparison at clinic follow ups
- Soft tissue detail
- Don’t forget T-L spine
Must See C7-T1, get Swimmer’s lateral view
Missed Injuries

• The presence of a single spine fracture does not preclude the inspection of the rest of the spine!
Lines

Check for Alignment

• Anterior Vertebral Line
• Posterior Vertebral Line
• Spino-laminar Line
Soft Tissue Shadows

- Max: 6 mm at C2
- 2 cm at C6
- (6 at 2 & 2 at 6)
Radiologic Assessment

- Facet
- Lateral Mass
- Lamina
- Spinous Process
Radiologic Assessment

- Sella Tursica
 - Clivus
 - Basion
 - Opisthion
Additional Radiographs

- AP
- Open-mouth odontoid
- Oblique
- AP & Lat. of entire spine
 - T-L-S spine: injured 5-10%
CT Scans

- Subtle bone injuries
- Facet abnormalities
- Sagittal reconstructions
- O-C2 & C7-T1
CT Scan

Can detect subtle fractures undetectable on plain films
MRI

• All injuries w/ Neuro deficit
 • Spinal cord integrity
 • Space available for cord
 • Disc herniation
 • Posterior ligamentous injuries

Ligamentous Injury
Mechanism of Injury

- Hyperflexion
- Axial Compression
- Hyperextension
Hyperflexion

- Distraction creates tensile forces in posterior column
- Can result in compression of body (anterior column)
- Most commonly results from MVC and falls
Compression

- Result from axial loading
- Commonly from diving, football, MVA
- Injury pattern depends on initial head position
- May create burst, wedge or compression fx’s
Hyperextension

- Impaction of posterior arches and facet compression causing many types of fx’s
 - lamina
 - spinous processes
 - pedicles
- With distraction get disruption of ALL
- Evaluate carefully for stability
- CENTRAL CORD SYNDROME
Classification

- Multiple Classification System
- Most are based on mechanism of injury
 - Harris et al OCNA 1986
 - Anderson Skeletal Trauma 1998
 - Stauffer and MacMillan Fractures 1996
 - Allen and Ferguson Spine 1982
 - AO/OTA Classification
 - Sub-axial Cervical Spine Injury Classification (SLIC)
Allen and Ferguson

- Mechanical
- Based on static radiographs

Categories
- Compressive flexion
- Vertical compression
- Distractive flexion
- Compression extension
- Distractive extension
- Lateral flexion

AOSpine Classification Systems (Subaxial, Thoracolumbar) Klaus J. Schnake, MD, Gregory D. Schroeder, MD, Alexander R. Vaccaro, MD, PhD, MBA, and Cumhur Oner, MD, PhD. J Orthop Trauma Volume 31, Number 9 Supplement, September 2017
AO/OTA Classification

- Mechanical
- Multiple subgroups and modifiers
 - Type A
 - Compression injuries
 - Type B
 - Distraction injuries
 - Type C
 - Translational injuries
Subaxial Cervical Spine Injury Classification (SLIC)

- Three major components
 - Injury Morphology
 - Compression
 - Distraction
 - Translation/Rotation
 - Discoligamentous status
 - Neurological status
- Point system
Subaxial Cervical Spine Injury Classification (SLIC)

<table>
<thead>
<tr>
<th>Injury Morphology</th>
<th>Points</th>
<th>DLC status</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Burst</td>
<td>1</td>
<td>Intact</td>
<td>0</td>
</tr>
<tr>
<td>Distraction</td>
<td>3</td>
<td>Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>Translation/Rotation</td>
<td>4</td>
<td>Disrupted</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>Max 4</td>
<td>Total</td>
<td>Max 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuro status</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>0</td>
</tr>
<tr>
<td>Nerve root Deficit</td>
<td>1</td>
</tr>
<tr>
<td>Complete Cord injury</td>
<td>2</td>
</tr>
<tr>
<td>Incomplete Cord Injury</td>
<td>3</td>
</tr>
<tr>
<td>Add-on: Persistent compression or stenosis with deficit</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>Max 4</td>
</tr>
</tbody>
</table>
Subaxial Cervical Spine Injury Classification (SLIC)

- Recommended treatment based on points
 - Score > 4 → Operative
 - Score < 4 → No operative
 - Score = 4 → Surgeons choice
Unilateral Facet Dislocation

- Flexion/distraction injury ± rotation
- Painful neck
- 70% radiculopathy, 10% SCI
- Easy to miss-supine position can reduce injury!
- “Bow tie” sign: both facets visualized, not overlapping
Unilateral Facet Dislocation

- “Empty Facet” on CT Scan
- Rotated vertebra
Unilateral Facet Dislocation

- Reduce to minimize late pain, instability
- Manual reduction
 - Gradually increase axial traction with the addition of weights
 - Some cervical flexion can facilitate reduction
 - Serial neurologic exams and plain radiographs is critical
Unilateral Facet Dislocation Treatment

- Non operative
 - Cervicothoracic brace or halo x 12 weeks
 - Need anatomic reduction

- OR approach and treatment depends on pathology
 - Anterior diskectomy and fusion
 - Posterior foraminotomy and fusion
Bilateral Facet Dislocation

- Vertebral body displaced at least 50%
- Injury to cord is common
- 10-40% herniated disk into canal
HNP With Facet Dislocation

- Reduction drags disc back
- Quadriplegia
- Classic paper to know
 - Eismont, et al, JBJS
Bilateral Facet Dislocation

• Timing for reduction and pre reduction MRI controversial
 - Spinal cord injury may be reversible at 1-3 hours

• Awake reduction then MRI vs. MRI before reduction in all
 - If significant cord deficits, reduce prior to MRI
 - If during awake reduction, paresthesias or declining status
 - Difficult closed reduction
 - If neurologically stable, perform MRI prior to operative treatment

• Obtain or repeat MRI before operating
Bilateral Facet Dislocation

- Definitive treatment requires surgical stabilization
 - Anterior decompression and fusion
 - If poor bone quality, consider posterior segmental stabilization
 - Occasional anterior & posterior stabilization
Facet fractures

- Stability depends on ligamentous complex
 - SLIC 0
 - Can be rotationally unstable
- Most commonly involves superior articular process (80%)
- Can have late pain and disability
- Late arthrodesis is an option
- Be aware of “fracture separation” of lateral mass
Teardrop Fracture

- Extension (upper cervical spine)
 - Usually benign
 - Avulsion type

- Flexion (lower cervical spine)
 - Anterior wedge or quadrangular fragment
Teardrop Fracture (Flexion Type)

- High energy flexion, compressive force
- Complex A/P injuries
- Often posterior element disruption
 - Unstable injury
- Routinely requires surgery
 - Corpectomy, A/P recons
Lateral Mass Fractures

- Lateral mass fracture involves ipsilateral lamina and pedicle
- Extension type injury?
- Understand the anatomy
- Usually surgical treatment
 - 2 level surgical stabilization
Cervical Fractures in DISH or Ankylosing Spondylitis

DISH AS
CAUTION!

• **Beware:**
 - Ankylosing spondylitis
 - If neck pain, treat as fracture ➔ MRI
 - Obese patients
 - Poorly imaged patients
 - Distracting injuries
 - Rotational injuries
Cervical Fractures in DISH or Ankylosing Spondylitis

- The fused spine that fractures behaves more like a long bone

Do not underestimate the instability of such fractures!!
Long lever arm concentrates forces
Cervical Fractures in DISH or Ankylosing Spondylitis

- 71 y.o. hits head
- Central cord syndrome
- DISH throughout TL spine
Cervical Fractures in DISH or Ankylosing Spondylitis

Take advantage of all imaging modalities
Cervical Fractures in DISH or Ankylosing Spondylitis

C6/7 fracture in DISH (extension-distraction)

C6/7 facet dislocation (flexion-distraction)

These C6/7 discs are not the same
Cervical Fractures in DISH or Ankylosing Spondylitis

Pitfall in managing extension-distraction injuries:

- When performing anterior discectomy and fusion, avoid large grafts that “overstuff” the disc space and induce further distraction!!
Treatment Guidelines

- Anterior Approach
 - Burst fx w/SCI
 - Disc involvement
 - Significant compression of anterior column

- Posterior Approach
 - Ligamentous injuries
 - Lateral mass Fx
 - Dislocations

Occasionally you need circumferential approach!
Anterior Surgery

- **Advantages**
 - Anterior decompression
 - Trend towards improved neuro outcome
 - Atraumatic approach
 - Supine position
 - Acute polytrauma

- **Disadvantages**
 - Limited as to number of motion segments included
 - Potential for increased morbidity
 - Poor access to CT transition zone
Posterior Surgery

Advantages
- Rigid fixation
- Foraminal decompression
- Deformity correction
- May extend to occiput and CT transition zones
- Implant choices

Disadvantages
- Minimal anterior cord decompression
- Prone positioning
- Trend towards increased blood loss
Non-operative Care

• Rigid collars
 • Conventional collars offer little stability to subaxial spine and transition zones
 • May provide additional stability with attachments
 • Good for post-op immobilization

• Halo
 • Many complications
 • Better for upper cervical spine injuries
 • Subaxial “snaking”
Thank You