Joint Contractures Following Intra-articular Fracture Surgery: Where Are We Now?

Kenneth A Egol MD

Department of Orthopedic Surgery

Disclosure

• Consultant for Exactech
 – Surgeon Designer of a PHLP
 – Royalties

• As PD and Vice Chair for education
 – Receive grants for resident education
 – Stryker, Synthes
 – Research Support
 – Synthes

Intrinsic Components

– Intra-articular adhesion
– Articular malalignment
– Loss of articular cartilage

Extrinsic Components

– Capsular and ligamentous contracture
– Heterotopic ossification
– Extra-articular malunion
– Skin contracture

Introduction
Risk Factors

- Open Fractures
- Burns
- Spinal Cord Injury
- Head Trauma
- Immobilization
- Heterotopic Ossification
- Mal-union
- Patient Compliance
- Compartment Syndrome

Risk Factors

- Open Fractures
- Burns
- Spinal Cord Injury
- Head Trauma
- Immobilization
- Heterotopic Ossification
- Mal-union
- Patient Compliance
- Compartment Syndrome

Work Up

- History
 - Injury
 - Soft tissue status
 - CRPS
- Exam
 - Joint ROM
 - Skin Condition
 - Nerve injury
- Imaging
 - XRAY, CT, MRI

Work Up

- History
 - Injury
 - Soft tissue status
 - CRPS
- Exam
 - Joint ROM
 - Skin Condition
 - Nerve injury
- Imaging
 - XRAY, CT, MRI

Pathophysiology

- Structural Changes of Capsule After Trauma
 - Thicker Capsule
 - Increased collagen (type I, III, and V)
 - Increased collagen cross-linking
 - Decreased proteoglycan and water
 - Disorganized fiber orientation
 - Increased lymphocytic migration
 - Key Cell – Myofibroblast

Pathophysiology

- Structural Changes of Capsule After Trauma
 - Thicker Capsule
 - Increased collagen (type I, III, and V)
 - Increased collagen cross-linking
 - Decreased proteoglycan and water
 - Disorganized fiber orientation
 - Increased lymphocytic migration
 - Key Cell – Myofibroblast
Pathophysiology

- Molecular Basis of Arthrofibrosis

- Increases in:
 - Low dose TNF-α
 - Transforming growth factor beta (TGF-β1)
 - Fibronectin ED-A
 - Matrix metalloproteinases (MMP-1,2,9,13,15)

Myofibroblast

- Myofibroblasts
 - Tissue fibroblasts – express
 - Cause collagen contraction
 - Elevated in pathologic fibrotic conditions
 - Number of cells inversely related to range of motion

Elbow

- Non Operative
 - Goal: 100 degrees of motion
 - < 6 Months
 - Splinting
 - Static Progressive
 - Dynamic
Elbow Contracture Release Outcomes: Recent Literature

 - Prospective study of 43 patients
 - Open arthrolysis for posttraumatic elbow stiffness
 - Median gain of 42° in postoperative range of motion (range -50-144°)

 - Prospective study of 54 patients with traumatic elbow contracture
 - Arthroscopic arthrolysis by a single surgeon
 - Improvement in range of motion both intraoperatively and in follow-up
 - Some loss at final follow-up 2 years (124°±22°)

 - Retrospective study of 103 patients
 - Open posttraumatic elbow contracture release
 - Result in full range of motion to achieve flexion/extension arc of motion of 124°±2°
 - 88 patients ultimately achieving flexion/extension arc > 100°
Knee

Knee- Operative Treatment

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Type of Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopic Release</td>
<td>Posterlateral.</td>
</tr>
<tr>
<td>Arthroscopic Release</td>
<td>Posterlateral.</td>
</tr>
<tr>
<td>Open quad ITG</td>
<td>Posterlateral.</td>
</tr>
<tr>
<td>Posterior Release</td>
<td>Posterlateral.</td>
</tr>
</tbody>
</table>

Key: MA: Medial Anterior; AL: Anterior Lateral; ML: Medial Lateral; VL: Vastus Lateralis

Knee Contracture Release Outcomes: Recent Literature

- **Knee Contracture Release Outcomes:**
 - **Recent Literature:**
 - Retrospective evaluation of 31 patients
 - Modified quadricepsplasty technique
 - 51\% of patients had good results and 19.35\% had excellent results at 1 year
 - Increased range of knee motion at 1 year: -82°.

 - Retrospective review of 14 patients
 - Arthroscopic lysis of adhesions following fractures
 - Mean total ROM increased 72° to 127°
 - Mean pre-op in-office total ROM was 73°, increased to 104° at latest follow-up.

 - Prospective study
 - Comparing minimally invasive arthroscopic arthrolysis with conventional open arthrolysis (quadricepsplasty)
 - Minimally invasive group had better results (95.0\% vs 73.33\%)
 - Better postoperative final joint range of motion (104.75°±17.87° vs 90.67°±19.64°)
Heterotopic Ossification - Hip

- **RISK FACTORS**
 - Spinal Cord and Traumatic Brain Injury
 - Incidence 10 - 53%
 - Correlates with injury level and severity
 - Thermal Injury
 - Burns >20% of surface area
 - Soft tissue contracture vs. HO
 - Hip Arthroplasty
 - Increased risk with approach, ischemia time, and cemented implants
 - Fractures
 - Acetabular fractures
 - Trochanteric flip lowest risk
 - Ventilator dependency higher risk

Prevention

- **NON-OPERATIVE MANAGEMENT**
 - Radiation
 - 700 - 800 cGy 24 hours pre-op or 48-72 hours post-op
 - Prevalence of HO decreases to 25%
 - NSAIDs
 - Inhibit osteogenic differentiation
 - Selective Cox 2 equally as effective as NSAIDs
 - Bisphosphonates
 - First generation - inhibit osteoclasts and osteoblasts
 - Conflicting data on efficacy
 - Potential to help with burn injuries and SCI

Operative Management

- **WHEN TO INTERVENE - Excision**
 - Painful ROM
 - Mechanical block to ROM
 - Progression of HO
 - CT - assess intra-articular lesions
 - Evaluate bone mineral density
 - Early resection - may prevent intra-articular complications
Hip Heterotopic Ossification Excision Outcomes: Recent Literature

- Review of 18 patients undergoing severe heterotopic ossification (HO) excision after ORIF of acetabular fractures.
- Combined radiation and indomethacin
- Mean Harris hip score was 84.5 (range 38-100) at 5 years
- Mean hip joint arc was 144° (range 90°-260°)

- Review of 26 patients
- Mean hip flexion-extension arc significantly improved almost 100 degrees
- Mean Harris hip score improved from 58.1 pre-op to 82.5 post-op.

Summary

- Uncommon but significant complication following trauma
- Careful history and physical exam is key
- Advances imaging to assess intrinsic vs extrinsic causes
- Pathophysiology related to changes in the joint capsule and heterotopic bone
- Surgical intervention is effective
- Prophylaxis does not appear to be
Bibliography

