Basic Science Focus Forum: Optimal Locking Plate Configuration
DATE: Wednesday, October 17
TIME: 9:43 - 9:51 am
Title of Talk: Role of screw location, screw type and plate working length!

Background
- Traditional non-locking screws & plates remain gold standard for simple, diaphyseal fractures; however, in some patients, preserving biology is of utmost importance
- New findings unravelled the relevance of cell mechano-biological stimulation by controlling interfragmentary movements (IFM) in aged or otherwise compromised patients

Locking Plates
Conceptually, locking plates address compromised vascularity under a plate fixation by providing a Bone-Plate Distance > 0
- Beneficial in
 o Short Segment Fixations: Peri-Articular
 o Peri-Prosthetic Fractures
 o Osteoporotic Bone
 o Indirect Reduction
 o Minimally Invasive Plate Osteosynthesis (MIPO)
 ▪ preserving soft tissue envelope
 ▪ but still enabling fragment repositioning when necessary; or fracture gap bridging when anatomical reduction of all fragments is not possible in comminuted fractures
- Proper screw placements enable early adjusted loading and load-sharing = properly flexible, compliant fixation

TAKE HOME: Screw location in locking plate
- Sufficient plate length to allow empty screw holes in bone shaft (especially closer to fracture): reduces failure risk
- Plate Span Ratio: Total Plate Length / Fracture Length:
 o 2-3 times in large comminuted fractures, screws close to fracture!
 o > 8-10 times in short fractures, screws NOT too close to fracture!
 but 1-3 empty holes in bridging titanium plate are usually efficient
- Sufficient, but not excessive screw number
 o More than 3 or 4 bi-cortical screws in bone shaft segment do not add much to axial stiffness or torsional stiffness respectively
- Plate Screw Density: Number of Screws / Number of Holes
 o Value usually < 0.5 or 0.4 in bone shaft: less than half of diaphyseal holes filled tends to reduce failure risk

TAKE HOME: Screw types
- Careful with mono-cortical screws, failure in rotation possible
- Stiffness reduction effect of near-cortical over-drilling or slots, far cortical locking or dynamic locking screws strongly reduced in physiological set-up versus lab experiments
- Hybrid Constructs:
 o Avoiding mal-reduction of fracture: Lag Before Locking
 o Locked screws may protect adjacent non-locking screws from loosening
 o Plate Independent Lag Screws (PILS) can help in fracture reduction and can be used with locking plate as a neutralization plate

TAKE HOME: Plate working length (PWL)
- With comminution or a gap: PWL is the MAIN regulator of stiffness!
 o axial and shear stiffness are coupled with locking plate, high PWL may lead to high shear!
 o Interfragmentary movements have different qualities (in-fracture-plane, out-of-fracture-plane: depending on fracture geometry): too flexible fixation causing shearing-off may also induce higher non-union rates
- Without a gap (graft, scaffold, closing gap under load, tissue-bridged gap during healing): importance of fixation stiffness diminishes