How Stiff Should the Construct Be?
Michael Hast, PhD
hast@pennmedicine.upenn.edu

1. Introduction
 a. Mechanical engineering background
 b. Industry and academic jobs in orthopaedics

2. Current Standards of ORIF
 a. Plates and screws
 b. Nails

3. Problems that are encountered
 a. Poor bone quality
 b. Nonunion
 c. Cut-out

4. Techniques we use to “tune” implants
 a. Materials and geometry
 i. Stainless Steel
 ii. Titanium
 iii. Others?
 b. Surgical Augmentation
 i. Locked and non-locked plates
 ii. Cortical and cancellous screw selection
 iii. Bone substitute materials
 iv. Overdrilling the near cortex
 v. Bridging and number of screws used

5. Our lab’s experiences- a brief review of recent projects
 a. Variations in plate and screw designs
 i. 2.7mm vs. 3.5mm plates in clavicle ORIF
 ii. Hollow vs. solid screws in Lisfranc injuries
 iii. Locking caps vs cross-threading in polyaxial locking plates
 b. Screw use and implant placement
 i. Screw use in olecranon repairs
 ii. ‘Missing’ the calcar in proximal humerus repairs
 c. Too stiff or not stiff enough in proximal humerus repairs?
 i. Cement augmentation
 ii. Far cortical locking
 iii. Both?

6. Ongoing and future research directions
 a. Assessing implant failure with serial fluoroscopy during fatigue tests
 b. Rethinking test standards to better reflect clinical experience
 i. More complex rigs in simple test frames
 ii. 3-D robot manipulation
 iii. Sawbones vs. cadaver vs. 3-D printed bones
 c. Lightweight and accessible computational models
 i. Dynamic activities of daily living
 ii. Trauma is under-studied in this area

7. Conclusions
 a. A really ‘simple’ engineering problem is actually very difficult to solve
 b. Clinic-lab-industry partnerships are imperative