Objectives

• Recognize the anatomy of the proximal tibia
• Describe initial evaluation and management
• Identify common fracture patterns
• Apply treatment principles and strategies
 • Partial articular fractures
 • Complete articular fractures
• Discuss rehabilitation, complications, and outcomes
• Illustrate selected tibial plateau cases
Epidemiology
(burden of disease/cost to society)

• Tibial Plateau
 – Articular surface proximal tibia
 – +/- metaphyseal /diaphyseal extension
• Account for 1.2% of all fractures
• Lateral Plateau: 55-70% of fractures
• Medial Plateau: 10-20% of fractures
• Bicondylar Plateau: 10-30% of fractures
Epidemiology
(burden of disease/cost to society)

• Bimodal distribution
 – Young adults: high energy mechanism
 • Highest in 5th decade
 • Male > Female
 – Elderly: low energy mechanism
 • Osteoporotic bone
 • Female > Male

• Significant functional impairment
 – Joint incongruity, malalignment, instability
 – Post-traumatic arthritis
Anatomy

• Consist of medial and lateral plateau
 – Medial larger
 – Medial lower (concave)
 – Medial bone harder (thus less likely to fracture)
 – Lateral higher (convex)
 – Lateral cartilage thicker (3 vs.. 4 mm)
Anatomy

Medial concave

Lateral convex
Anatomy

- Bony prominences
- Intercondylar eminence (menisci & cruciate ligaments attachment)
- Tibial tubercle (patellar tendon)
- Gerdy’s tubercle (Iliotibial band)
- Tibia slope: 10 degrees posteroinferior
Anatomy

- **Lateral Meniscus**
 - Larger (cover more articular surface)
 - Commonly torn with lateral plateau fracture

- **Medial Meniscus**
 - “C” shaped
Mechanism of Injury

- Valgus producing force
 - Lateral plateau
- Varus producing force
 - Medial plateau
- Axial compressive force
 - Bicondylar plateau
- Combination
 - High energy
 - Bicondylar plateau
 - Soft tissue injury
Mechanism of Injury

- Valgus producing force
 - Lateral plateau
- Varus producing force
 - Medial plateau
- Axial compressive force
 - Bicondylar plateau
- Combination
 - High energy
 - Bicondylar plateau
 - Soft tissue injury
Mechanism of Injury

- Valgus producing force
 - Lateral plateau
- Varus producing force
 - Medial plateau
- Axial compressive force
 - Bicondylar plateau
- Combination
 - High energy
 - Bicondylar plateau
Mechanism of Injury

- **Low energy**
 - Split depression
 - Increasing age
 - Poor bone quality

- **High energy**
 - Pedestrian vs. car (bumper)
 - Fall from height
 - Motor vehicle accident
 - Axial load (knee extended)
 - Bicondylar fracture
 - Associated injuries
Associated Injuries

- Ligaments
 - MCL, LCL
 - ACL, PCL
- Menisci
 - Lateral meniscus likely if:
 - > 5mm depression
 - > 6mm condylar widening
 - Gardner J Trauma 2006
- Popliteal artery
- Peroneal nerve
- Compartment syndrome

MCL tear
Associated Injuries

- Lateral plateau
 - Tear of meniscus
 - MCL / ACL tear
- Medial Plateau
 - Fracture / dislocation variant
 - Popliteal artery injury
 - Peroneal nerve injury
- Bicondylar
 - Open injury
 - Compartment syndrome
Evaluation - History

- Mechanism of injury
- Injury factors
 - Soft tissues
 - Fracture patterns
 - Associated injuries
- Patient factors
 - Age
 - Bone quality
 - Comorbidities
- Previous level of activity
 - Function demands
Evaluation – Physical Exam

• Initial Inspection
 – Skin integrity
 – Soft tissue swelling
 – Open fracture
 – Gross deformity
 – Shortened limb
 – Neurovascular status

• Document the Exam!!!
Evaluation – Physical Exam

- **Low energy mechanism**
- Knee swelling
- Limited knee ROM
- Tender to palpation
- Able to assess knee stability
 - Varus/valgus stress
 - 0 and 30 degrees
 - Lachman’s exam for ACL deficiency
Evaluation – Physical Exam

- **High energy mechanism**
- Advanced Trauma Life Support (ATLS)
 - Resuscitation
 - Limb threatened
- Soft tissue integrity
 - Open fracture
 - Abrasions
 - Blisters
- Compartment syndrome
- Knee stability exam
 - Difficult to perform
Evaluation – Physical Exam

• Soft tissue assessment

• Know
 – Gustilo & Anderson open fractures classification
 – Tscherne - closed fractures classification

• Avoid missing compartment syndrome

• Determine timing of surgery
 – Skin wrinkles present?
Evaluation – Physical Exam

- Document NV status
- Neurologic
 - Peroneal nerve
- Vascular
 - Ankle-Brachial Index
 - ABI > 0.9
Evaluation – Physical Exam

- ABI
- Screening test
 - LE injuries with concerns for vascular injury
- Obtain systolic pressure
 - Uninjured upper extremity (Brachial)
 - Injured LE limb (Ankle)
 - BP cuff just proximal to the ankle
 - DP or PT pulse
Evaluation – Physical Exam

• ABI < 0.90
 – Predictable of arterial injury
 – Vascular consult
 – Proceed with arteriogram

• ABI > 0.90
 – Admit for observation
 – Followed with serial noninvasive exam

• Johansen et al J Trauma
 – Injured Extremities
 – ABI
 – Sensitivity = 95%
 – Specificity = 97%

• Mills et al J Trauma 2004
 – Knee dislocation
 – ABI
 – Sensitivity and Specificity = 100%
Evaluation - Radiographic

- Plain X-ray knee/tibia
 - AP
 - Lateral

- Obliques of knee
- Internal or external rotation
Evaluation - Radiographic

- Tibial plateau view
- Normal tibial slope
 - 10 degrees posteroinferior
Evaluation - Radiographic

- CT scan
 - Surgical consideration exists
 - Complex fractures to assist in surgical planning
 - Assessing
 - Depression
 - Comminution
 - Fracture line (coronal split-medial side with bicondylar plateau)
 - Obtain CT after applying traction (ex fix)
Evaluation - Radiographic

- MRI scan?
- Subtle nondisplaced fracture line
- Gardner JOT 2005
- Noted high associated soft tissue injuries
 - Lat. meniscus: 91%
 - Med. Meniscus 44%
 - ACL
 - PCL
Classification

- **Schatzker**
 - Type I: Split fracture of the lateral plateau
 - Type II: Split depression fracture of the lateral plateau
 - Type III: Pure depression fracture of the lateral plateau
 - Type IV: Medial plateau (possible fracture / dislocation)
 - Type V: Bicondylar plateau fracture
 - Type VI: Plateau fracture with metaphyseal / diaphyseal dissociation
Classification

• **AO / OTA** (41- Proximal section)
• **Type A: Extraarticular fracture** (41-A)
• **Type B: Partial articular fracture** (41-B)
 – B1: Pure split
 – B2: Pure depression
 – B3: Split depression
• **Type C: Complete Articular fracture** (41-C)
 – C1: Simple articular, Simple metaphyseal
 – C2: Simple articular, Multi-fragmentary metaphyseal
 – C3: Multifragmentary articular
Classification

- Unicondylar fracture
- Schatzker I, II, III
- AO/OTA (41-B)
 - Partial articular

![Diagram of fracture types: Split, Split-depression, Central depression]
Classification

- Unicondylar fracture
- Schatzker IV
- AO/OTA (41-B)
 - Partial articular
 - Medial plateau
 - Fracture / dislocation
 - Displaced, higher energy
 - Vascular injury concern

Split fracture, medial plateau
Classification

- Bicondylar fracture
- Schatzker V, VI
 - V: Medial tibial plateau split and Lateral split depression
 - VI: Plateau with metadiaphyseal dissociation
- AO/OTA (41-C)
 - Complete articular

Bicondylar fracture Metadiaphyseal dissociation
Treatment Principles

- Soft tissue management
 - Surgical timing is important
 - Wringles in the skin
- Temporary Stabilization
 - Staged protocol
 - Barei et al. JOT 2004
 - Egol et al. JOT 2005
Treatment Principles

- Anatomic reduction of articular surface
 - Obtain and maintain
- Reduce condylar width
- Address meniscal injuries
- Restore mechanical axis
 - metadiaphysis
- Stable fixation
- Early ROM
Treatment Options: Nonsurgical

- **Patient factors**
 - Elderly
 - Nonambulatory
 - Pre-existing arthritis

- **Injury factors**
 - Articular incongruity
 - <5 mm, elderly, sedentary activity
 - Stable Varus / Valgus stress
 - < 5 -10 degrees instability

71 y/o male, multiple med. comorbidities
Nonsurgical – Technical Pearls

- Immobilize 1-2 weeks
- Knee immobilizer or hinge knee brace
 - Locked in extension
- Start ROM
 - Controlled motion
 - Start 0-30 degrees and advance as tolerated
 - Goal- 90 degrees at 4wks
- NWB 6-8 weeks

Radiographic F/U
Weekly for first 3 weeks
Indications for Surgery

• Absolute indications
• Open tibial plateau
• Associated compartment syndrome
• Associated vascular injury
Indications for Surgery

- Relative indications
- Axial malalignment
 - Instability in full extension
- Articular incongruity
 - >3mm in young, active
- Condyle widening
Indications for Surgery

- Displaced bicondylar
- Most if not all medial plateau
Timing of Surgery

Low Energy:
Fixed electively and early

High Energy:
Be patience
Temporary External Fixation

- Knee spanning external fixation
- Ligamentotaxis
- Improve fracture fragment gross alignment
 - Length and alignment
- Minimize further damage to articular surface
- Soft tissue assessment and wound care
Temporary External Fixation

• Candidates for external fixation
• Axially unstable tibial plateau fracture
 – Bicondylar fracture
 – Schatzker type V and VI
• Fracture / Dislocation
 – Schatzker type IV
External Fixation: Patient set up

- Supine
- Radiolucent operating table
- C-arm fluoroscope
 - Contralateral side
- Sterile towel bump
 - Allow 5-10 degrees knee flexion
- 2 pins in femur
 - Anterior or lateral
- 2 pins in tibia
 - Antero-medial
Implants – External Fixation

• Large external fixator system
• 5 mm half threaded schanz pins
 – Self drilling
 – Different length available
• Connecting rods and Clamps
• Compressive dressing
 – Ext. fix sponges
 – Retention clip
External Fixation - Pearls

- Mark knee joint and fracture sites
- Schanz pins placement out of zone of future surgical incisions
- Pre-drilling for good bone quality
- Avoid skin tension by pins
- Pin spread to improve construct stability
External Fixation - Pearls

• Placement of metal clamps
 – Away from knee joint and fracture zone
 – Allows better imaging

• Padded prefabricated posterior splint
 – Offload heel

• Compressive dressing
 – Stabilize pin-skin interface
 – Minimize pin-skin motion
Temporary Stabilization - Case Example

- Staged protocol
 - Knee spanning external fixation
 - Restore length, alignment, rotation
- Definitive ORIF 10-21 days
- Wait for soft tissue
- CT scan
- Preop plan
ORIF- Patient Set Up

• Radiolucent operating table
• C- arm fluoroscope
 – Contralateral side of injured limp
 – Exception: Medial plateau- ipsilateral side
• Buttock bump
• Tourniquet
• Extremity positioners
 – Sterile towel bump
 – Leg ramp
 – Radiolucent for imaging
Patient Set Up - Technical Pearls

- IV bag pump - buttock bump
 - Deflated allows easier access to posteromedial tibia
Patient Set Up - Technical Pearls

- IV bag pump-buttock bump
 - Inflated allows neutral leg alignment for anterolateral approach
ORIF- Equipment

• Headlamps
• Femoral distractor
• Osteotomes
• Bone tamps
• Fracture reduction instruments
• K-wires
ORIF- Implant options

- Unicondylar fracture
- Conventional non-locking plate
 - “L” or “T” plate
 - Buttress
- Pre-contoured periarticular plates
- Raft screws alone
 - 3.5mm or 4.5mm
- Locking plate
 - Osteoporotic bone
ORIF- Implant Options

- Angular stable (Locking) implants
- Precontour for proximal tibia
- Bicondylar tibia plateau with metadiaphyseal involvement
- Spanning or bridging across fracture zone
- Selected fracture, allows stabilization of medial plateau
External Fixation

- Limited internal fixation
 - Small incisions or percutaneous
- Thin-wire ring fixators
 - Connect to the shaft
 - Fixation distally with 5mm half-pins
- Advantages
 - Minimize soft tissue injury
- Still need to reduce articular surface!!!
ORIF- Fixation Summary

• Fixation based on fracture type
• Type I, II, III: Buttress plates with raft screws
• Type IV: Medial plate (buttress)
 – Be cognizant of any impaction of lateral joint line
• Type V, VI:
 – Important to understand plate function
 – Pattern dictates fixation
 – Single lateral base fixed angle implant
 – Dual plating (lateral and posteromedial)
Surgical Approaches

• Anterolateral
 – Lateral plateau involvement
 – Combination with medial for complex plateau

• Posteromedial
 – Medial plateau
 – Coronal split

• Posterior

• Dual approaches
 – Anterolateral
 – Posteromedial

Copyright by AO Foundation, Switzerland
Surgical Approach: Anterolateral

- Most common approach
- Lazy S or Inverted L
- Curvilinear incision centered over Gerdy’s tubercle
- Extend distally of the anterior compartment fascia
 - 1 cm off tibial crest
 - Subperiosteal elevate muscle
- Extend proximally midaxial line of knee joint
- Full thickness skin flaps
Surgical Approaches: Anterolateral

- Incise and elevate IT band and anterior compartment fascia
- Subperiosteal dissection off lateral tibial crest and not thru compartment muscle
- Submeniscal arthrotomy
- Inspect the meniscus
 - Tag
 - Repair as needed
Surgical Approach: Posteromedial

- Straight incision
- Posterior border of proximal tibia
- Avoid Saphenous nerve and vein
- Interval between Medial head gastrocnemius and hamstrings (Pes anserine tendons)
Surgical Approach: Posteromedial

- Interval between
- Hamstrings (Pes anserine tendons)
- Medial head gastrocnemius
Surgical Approaches: Posteromedial

- Pes anserine tendons
 - Retracted
 - Tagged and divided for more exposure
- Posterior to superficial MCL
- Medial gastroc muscle elevated off tibia
- Subperiosteal elevate popliteus and soleus muscles
Surgical Approaches

- Other surgical approaches
- Direct medial or midline parapatellar anterior
 - Isolated medial tibia fractures
- Direct posterior approach
 - Posterior shear fractures
 - Prone
 - Inability to treat anterolateral fracture
Treatment of Specific Schatzker Fractures Types
Schatzker Type I Split
Schatzker Type I Split

- Goals:
 - Restore articular congruity
 - Articular step off
 - Condylar widening
 - Open vs. percutaneous
 - Fixation
 - Lag screws
 - Buttress plate
Schatzker Type II Split-Depression
Schatzker Type II Split-Depression: Surgical Tactics

- Submeniscal arthrotomy
- Full visualization of articular surface
- Repair lateral meniscus
- Femoral distractor
- Elevate articular depression
- Reduce condylar widening
 - Large pelvic reduction clamp
- Temporary K-wires
Schatzker Type II Split-Depression

- Fill defect
 - Allograft
 - Autograft
 - Bone substitutes
- Buttress plate
 - Nonlocking: Most
 - Locked: osteoporotic bone
- Subchondral raft screws
Schatzker Type III Pure Depression

Central depression
Schatzker Type III Pure Depression

- Surgical technique
- Open approach
 - Submeniscal
- Arthroscopic
- Elevate depressed fragment
- Fill defect
- Stabilization
 - Subchondral raft screws
Schatzker Type III Pure Depression

• Surgical technique
 • Submeniscal
 • Arthroscopic
• Elevate depressed fragment
• Fill defect
• Stabilization
 • Subchondral screws
Schatzker Type IV Medial plateau

Split fracture, Medial plateau

CT post ext. fix
Schatzker Type IV Medial plateau

- Surgical approach
- Posteromedial
 - Interval between
 - Pes anserine tendons and Medial head gastrocnemius
Schatzker Type IV Medial plateau

- Don’t forget about possible lateral plateau depression
- Bone tamp to elevate
- May need anterolateral incision to reduce depression
Schatzker Type IV Medial plateau

- **Fixation**
 - Straight medial plating
 - Posteromedial plating
 - Combination
Schatzker Type V, VI Bicondylar

Bicondylar fracture

Metadiaphyseal dissociation
Classic Fracture Pattern

- Bicondylar Fxs
 - 2 classic components:
 - Lateral split depression
 - Posteromedial / coronal split
Schatzker Type V, VI
Bicondylar

- Preop plan is important
- Review x-rays and CT scan
- Identify all fractures
Schatzker Type V, VI Bicondylar

- Preop plan is important
- Review x-rays and CT scan
- Identify all fractures
Schatzker Type V, VI
Bicondylar

- Dual incisions
- Reduce medial plateau
 - K-wires
 - Antiglide plate
- Reduce lateral plateau
 - Tamp up depression
- Restore condylar width
 - Large king tong clamp
- Connect articular block to diaphysis
Schatzker Type V, VI
Bicondylar

• Maintain reduction
• Dual plating
Schatzker Type V, VI
Bicondylar

- Restore mechanical axis
- Cannot accurately assess with fluoro
- Often need intraoperative plain films
Schatzker V, VI Bicondylar

- Single lateral fixed angle implant
 - Ability to capture medial condyle with laterally based implant
 - Medial apex cortical contact with minimal comminution
Rehabilitation

- Postoperative Care
- Antibiotic x 24 hours
- +/- drain
- Knee brace
 - For comfort until able to do straight leg raise (SLR)
 - Associated ligamentous injuries
- Elevate leg
- NWB 10-12 weeks
Rehabilitation

- Physical therapy
- Early ROM
- CPM
- Strengthening
 - Isometric quad sets
 - Heel slides
 - SLR
- Gait training
 - Crutches
 - D/c crutches when able to walk without limp and pain
Complications

- Infection
 - Surgery timing is important
 - Careful soft tissue handling
 - Prolong operative time

- Nonunion
 - Aseptic
 - Metadiaphyseal junction
 - Septic
 - Opened fracture

Aseptic Nonunion Revised with ICBG
Complications

- Contractures
 - Arthrofibrosis
 - Encourage early ROM and physical therapy
 - May require knee manipulation
 - Arthroscopic lysis of adhesion
- Post Traumatic Osteoarthritis

4 yr. F/U
Outcomes

• Lansinger et al. JBJS Am 1986
• 102 fractures, 20 yr.. F/U
• 90% excellent or good results
 – Despite some incongruity
• 10% fair or poor
 – > 10mm depression persisted

• Conclusion
 – Instability (lateral or medial with knee extended)
 – Should be operative
Outcomes

• Honkonen JOT 1995
• 131 fx, 7.6 yr. mean F/U
• 76 operative, 55 nonoperative
• Risk factors for post-traumatic arthritis
 – Increase age
 – Removal of meniscus
 – Articular incongruity
 – Instability
 – Malalignment
Outcomes

• Stannard et al. JOT 2004
• 34 AO/OTA type 41C
• Mean F/U 21 mo.
• LISS implant
• All healed, mean 15.6 weeks
 – 1/34 malalignment, 0 deep infection, 2 superficial
• 18% implant related pain
 – Careful attention to detail can decrease painful HW
Outcomes

• Barei et al. JBJS Am 2006
• Retrospective
• Eval dual incisions and dual plating
• 83 AO/OTA Type 41C3
• Mean F/U 59 mo.
• Correlated with outcomes
 – Age, polytrauma, articular reduction
• Residual dysfunction is common
Outcomes

• Rademakers et al JOT 2007
• 109 fractures, Long-term F/U (5-27 yr.)
• 69% unicondylar, 31% bicondylar
• Mean ROM 135 degrees
• Functional results (Neer, HSS knee scores)
 – Unicondylar had better results vs.. bicondylar
• 31% post-traumatic arthritis, most are tolerable
• Malalignment > 5 degrees correlated with increased DJD
• No differences with patient’s age
Outcomes

• Canadian Orthopaedic Trauma Society JBJS Am 2006
• Level I evidence PRCT
• ORIF vs. Circular fixator
• Displaced Bicondylar (AO/OTA type 41 C1-3)
• 2 yr. F/U, similar results
 – Quality of reduction
 – Residual limb-specific and general health deficits
• Circulator fixator
 – Less EBL, less inpatient hospital stay
• ORIF with higher complication rate
Outcomes

• Katsenis et al. JOT 2009
• Limited internal fixation and circular fixation
• Retrospective, 3 and 5 yr. F/U
• Knee function and Post-traumatic arthritis
• 129 fx
• Excellent or good
 – 82% at 3 yr.. 78% at 5 yr..
• High incidence of post-traumatic arthritis at 5yr
 – Functional results still satisfactory
References

- Gardner MJ. *J Trauma* 2006;60(2):319-323.
References

- Hansen, Matthias; Pesantez, Rodrigo. AO Surgery Reference: Online reference in clinical life.
Selected Cases

- Schatzker II
Selected Cases

- Schatzker II
Selected Cases

- Schatzker II
- ORIF
- Buttress plate
- Raft screws
Selected Cases

Bicondylar with metadiaphyseal fracture
Selected Cases

Bicondylar with metadiaphyseal fracture

- Ext Fix
Selected Cases

Bicondylar with metadiaphyseal fracture

- ORIF
Selected Cases

Bicondylar with tibial tuberosity fracture

• Must address tuberosity
 – Allow early ROM

• Options for tuberosity fixation
 – Lag screws
 – Plates/screws
Selected Cases

Bicondylar with tibial tuberosity fracture

CT scan
Selected Cases

Bicondylar with tibial tuberosity fracture

- **ORIF**
- **Posteromedial approach**
 - 3.5mm recon plate
 - Buttress
- **Anterolateral approach**
 - Precontour plate
- **ORIF tuberosity**
 - Percutaneous
 - Lag screws
Selected Cases

Bicondylar with tibial tuberosity fracture

Temporary Ext. Fix
Selected Cases

Bicondylar with tibial tuberosity fracture

CT scan
Selected Cases

Bicondylar with tibial tuberosity fracture

- ORIF
- Posteromedial approach
 - 3.5mm recon plate
 - Buttress
- Anterolateral approach
 - Precontour plate
- ORIF tuberosity
 - 1/3 tubular plate
Summary: Tibial Plateau Fractures

• Understand the fracture pattern
• Respect the soft tissues
• Partial articular (Schatzker 1-3)
 • Buttress: plates and/or interfragmentary screws
• Beware of medial plateau (Schatzker 4)
• Complete articular (Schatzker 5,6)
 • External fixation
 • Preop plan
 • ORIF
 • Obtain and maintain
THANK YOU