Forearm Fractures

Derek J. Donegan, M.D.
University of Pennsylvania
Revised 2014
Previous Author: Steven I. Rabin; Aug 2009
Problem

- Fractures of adult forearm are inherently unstable
- According to the AO documentation center, forearm fractures accounted for 10-14% of all fractures between 1980 and 1996
- Mistreatment can lead to malunions and nonunions
 - Cosmetically unappealing
 - Functionally impeding
Anatomy

• Radial Bow
 – Critical for rotation

• Interosseous Membrane
 – Tethers Distal Ulna to Proximal Radius
Radial Nerve

- PIN
 - Proximal Radial Neck
- Superficial Branch Distal
Radial Artery

- Posterior to Brachioradialis
Median Nerve

- Midline
- At risk with Carpal Tunnel
- AIN along IOM
Mechanism

- Low Energy
 - Direct blow (i.e. Nightstick fx)
 - Indirect
 - Galleazzi
 - Monteggia

- High Energy
 - Associated injuries
 - open
Clinical Findings

• PE
 – Floppy, Swelling, Pain
 – Assess Elbow and Wrist
 – Neurovascular Examination
 • AIN, PIN, radial/ulna arteries
 – Soft Tissue
 • Open Wounds
 • Compartments
Compartments

- Dorsal: Extensors
- Volar: Flexors
 - Superficial
 - Deep
- Mobile Wad
 - BR
 - ECRB
 - ECRL
Compartment Syndrome

• Pain
 – Passive Extension
• High energy injury
• Tx
 – Dorsal Approach
 – Volar Approach
 – Carpal Tunnel
Work-up

- X-rays in 2 planes (AP and lateral)
 - Be sure to image joint above and below
 - Wrist and elbow
- CT and MRI
 - Typically unnecessary
 - Add little clinical information
Classification

- AO/OTA
 - 22
 - Fracture type
 - A=simple
 - B=Wedge
 - C=complex
 - Involved bones
 - 1=ulna
 - 2=radius
 - 3=both bones
Type A

- Simple Fracture
 - Ulna alone, Radius intact
 - Radius alone, Ulna intact
 - Both Bones broken

- Ex: Transverse radius fracture
Type B

- **Wedge Fractures**
 - Ulna alone
 - Radius alone
 - Both bones

- **Ex: Both Bones**
Type C

- Complex Fractures
 - Ulna alone
 - Radius alone
 - Both bones

- Ex: both bones
Non-Operative Treatment

- Non-operative
 - Poor
 - Nonunion
 - Malunion

- Non-operative
 - Functional Brace / Cast
 - Ulna
 - Stable
 - Closed
 - Distal 1/3
 - < 10 Degrees
 - Radius
 - Nondisplaced
 - Radial bow maintained
Operative Treatment

- Operative
 - Functional
 - Anatomic
- All Unstable
- All Open
- Non-operative treatment rare
Treatment

• Early surgical intervention (within the first 6-8 hours) is optimal to avoid radioulnar synostosis

• Goals
 – Anatomic reduction
 – Rigid fixation
 – Stable construct
 – Restoration of radial bow
Timing of Surgery

• Early Surgery is Desirable but not Essential
 – Easier reduction especially if shortening
 – Avoids pre-op immobilization

• Delayed Surgery
 – If poor soft tissues
 – If other injuries or medical problems prevent
Open Fractures

- Antibiotics
- Tetanus
- Debridement
- Irrigation
- Surgical Tx
 - ORIF: Type I, II, IIIA
 - Ex-Fix: Type IIIB, IIIC
Treatment

• Fixation options include
 – IM nailing
 – External fixation
 – plate fixation
Treatment

- IM Fixation
 - Not routinely used
 - Soft tissue injury
 - Pathologic Fracture
Treatment

• External Fixation
 – open type IIIb
 – open type IIIc
Treatment

• **Plate Fixation**
 – provides stable strong anatomic fixation
 – eliminates need for external casting
 – allows early functional motion with union rates over 95%.

• **Obtain anatomic reduction**

• **Restore ulna & radial length**
 – Prevents subluxation of either proximal or distal radioulnar joints

• **Restore rotational alignment**

• **Restore radial bow**
 – Essential for rotational function of forearm
Approaches

• Ulna
 – exposed along the subcutaneous border between the flexor and extensor carpi ulnaris
 – dorsal cutaneous branch of the ulnar nerve
 • ≈5 cm proximal to the wrist joint
 • identify and protect
Approaches

• Radius
 – Two approaches
 • Henry
 – Volar
 – Good for middle to distal third fractures
 • Thompson
 – Dorsal
 – Good for proximal to middle third fractures
Approaches-Henry (volar)

- Incision begins 1 cm lateral to the biceps insertion
- Extends distally to the radial styloid
- Interval between brachioradialis and FCR
- Identify radial artery and superficial radial n.
- Protect PIN proximally
Approaches-Thompson (dorsal)

- Incision begins just anterior to the lateral epicondyle
- Extends distally towards the ulnar side of Lister’s tubercle
- Interval is developed between the ECRB and the EDC, exposing the supinator muscle
- Identify PIN
 - 1cm proximal to its distal edge of supinator
Intra-op Tips

- Supine w/ hand table
- Tourniquet
- Approach simpler fx 1st
- Reduce and provisionally fix
- Approach other fx
- Reduce and plate with LCDC or LCP in compression mode
- Goal of 6 cortices above and below with 3 screws over 4 or more holes on each side
- Check and modify reduction of other bone
- Plate with LCDC or LCP in compression mode
- Goal of 6 cortices above and below with 3 screws over 4 holes on each side
- Confirm reduction with c-arm
- Irrigate and close ulna wound first
- Irrigate and close radial wound
- If unable to close, VAC and return in 3-5 days to close vs STSG
The Role of Bone Grafting

• Bone Graft if there is Severe Bone Loss or the patient has an Open Fracture Severely Compromising Local Biology
 – If >1/3 cortical circumference is lost, consider bone grafting because interfragmentary compression becomes impossible
 • But the standard teaching that >30% comminution “requires” grafting has been challenged where newer biologic techniques are used.
Technical Tips for Plate Fixation of Forearm Fractures

• Use Indirect Reduction Techniques Preserving Soft Tissue Attachments
 – Periosteal stripping must be minimized
 – Narrow retractors placed to avoid penetration of interosseous membrane

• Close or Skin Graft Open Wounds within 3-5 days
Post-op

- Sterile dressing and sugartong splint
- Closely monitor compartments
- Low threshold to split dressing
- POD#1
 - Initiate digital ROM
- Delay Wrist/Elbow ROM 3-5 days
 - Prevents hematoma formation
Follow-up

• Forearm rotation is initiated as the patient's comfort allows
 – Usually 1st or 2nd week post-op
• RTC @ 2 weeks, 6 weeks, 12 weeks, and 4-6 months postoperatively
 – AP/lat X-rays each visit
• Activity modification to ADL’s only until fracture healed
 – 8-12 weeks
• progressively return to a normal lifestyle.
Complications

• Refracture after plate removal
• Symptomatic hardware
• Nonunion
• Malunion
• Infection
• Neurologic injury
• Compartment syndrome
• Radioulnar synostosis
Pain & Hardware Removal

- **Two Years**
 - Bone Density Does Not Normalize for 21 months
 - 4 to 20% Refracture Risk
 - Usually through original fracture or screw hole
 - Large plate (4.5 mm DCP)
 - Nonunion
 - Infection & Nerve Injury
 - Pain may persist after plate removal

- **Post-removal**
 - 67% Residual Symptoms
 - 9% Worse
 - Weather
 - Exercise
 - Skin or Tendon Irritation
Malunion

- Loss of motion with >10° of angulation
- 5° loss of radial row = 15° loss of sup/pro
- Decreased grip strength occurs with loss of the radial bow
 - Schemitsch, EH & Richards RR JBJS 1992:74A:1068-78
- Tx: Osteotomy and Repair
Nonunion

- Poor biomechanics
- Poor Technique
 - Stable construct
 - Too few screws
 - Improper compression
 - Soft tissue management
- Initial Fracture
 - Open Injury
 - Comminuted fracture

- Tx
 - Revision Fixation
 - Bone Grafting
 - Segmental bone loss
 - Iliac crest <3.5cm
 - Consider vascularized fibular graft >3.5cm
Neurologic Injury

• Closed Fracture
 – Usually iatrogenic
 – PIN: Proximal approach
 – AIN: Vigorous Radial Reduction
 – Radial Sensory Branch: Anterior dorsal exposure

• Open Fracture
 – AIN Most Common
Synostosis

- Incidence 1-8%
- Risks
 - BBFFx at same level
 - TBI
 - Surgical delay (> 2 wks)
 - Single incision
 - IOM Penetration
- Tx
 - Early resection
Outcomes

• Closed Fractures
 – 98% Union, 3% infection, 92% good function
 – 96% Union, >85% good function

• Open Fractures
 – 93% Union, 4% infection, 85% good function
Outcomes

- Motion
 - Near Normal
- Grip Strength
 - 30% Reduced
- Disability is Pain Related
 - Goldfarb et al JBJS Br 2005 Mar;87(3):374-9
 - Droll et al JBJS Am 2007 Dec;89(12):2619-24
Special Cases

- Fractures Associated with Joint Disruption
 - Galleazzi Fracture
 - Monteggia Fracture
 - Combined Patterns
- Fractures Associated with other Injury
 - Floating Elbow (Ipsilateral Humerus Fracture)
 - Open Fractures
Fractures Associated with Joint Disruption
Galeazzi & Monteggia

• Best Treatment
 – ORIF w. Plate Fixation of Diaphyseal Fracture
 – Joint Usually Reduces Indirectly and is stable
 – If Unstable: require open reduction of joint
 – If irreducible – it is usually because the diaphyseal fracture has been mal-reduced
Galeazzi Fractures

• Classic: Fracture of distal 1/3 radial shaft with Dislocation Distal Radioulnar Joint

• Variants: Fracture can occur anywhere along the radius or associated with fractures of both bones with DRUJ disruption
Galleazzi Fractures

Radiographic Signs of DRUJ Injury:

- Fracture at Base of Ulnar Styloid
- Widened DRUJ on AP x-ray
- Subluxed Ulna on Lateral x-ray
- >5 mm Radial Shortening
- Radius Fracture < 7.5cm from the wrist joint
 - (unstable DRUJ in 55%)
Galleazzi Fractures

- **Always require Plate fixation of the Radius**
 - Distal Medullary canal too wide/funnel shaped for intramedullary fixation
 - Sometimes require temporary pin fixation of DRUJ or repair of the ulnar styloid when fractured

- **Postop:**
 - If DRUJ stable – early motion
 - If DRUJ unstable – immobilize forearm in supination for 4-6 weeks in a long arm splint or cast
 - DRUJ pins are removed at 6-8 weeks
Galeazzi fractures

• May be associated damage to triangular fibrocartilage, which may require early or late repair with open or arthroscopic techniques

 – Can Occur with Low Velocity Gunshots
Monteggia Fractures

Classic: Fracture of Proximal 1/3 Ulna with Dislocation of Radial Head

<table>
<thead>
<tr>
<th>Type</th>
<th>%</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>60%</td>
<td>Both Anterior: Dislocation Radial Head & Angulation Ulna Fracture: Equivalent: Radial Head or Neck fractured</td>
</tr>
<tr>
<td>II</td>
<td>20%</td>
<td>Both Posterior: Dislocation Radial Head + Angulation Ulna Equivalent: Posterior Elbow Dx.</td>
</tr>
<tr>
<td>III</td>
<td>15%</td>
<td>Lateral Dislocation Radial Head + Any Fracture of Proximal Ulna</td>
</tr>
<tr>
<td>IV</td>
<td>5%</td>
<td>Anterior Dislocation Radial Head + Fractures Proximal Shafts of Both Bones are at the same level</td>
</tr>
</tbody>
</table>
Monteggia Fractures

Radiographic Findings:

Normal:
- Line Drawn through Radial Head & Shaft should always line up with Capitellum
- Supinated Lateral: lines drawn tangential to head anteriorly and posteriorly should enclose the Capitellum

Monteggia Fracture:
These radiographic findings are disrupted
Monteggia Fractures

• After fixation of the ulna, the radial head is usually stable (>90%)
 – If radial head not reduced recheck ulna length

• If open reduction is required for the radial head, the annular ligament is repaired
 – Failure of the radial head to reduce with ulnar reduction is usually due to interposed annular ligament or rarely the radial nerve

• Associated Radial Head Fractures may require fixation/replacement
Monteggia Fractures

• Postoperative treatment depends on rigidity of ulnar fixation and stability of the radial head
 – Casting with more than 90 degrees of elbow flexion is rarely needed to maintain the radial head reduction (6 weeks)
Literature

- Falder S, Sinclair JS, Rogers CA, Townsend PL. Long-term behaviour of the free vascularised fibula following reconstruction of large bony defects. Br J Plast Surg. 2003 Sep;56(6):571-84. PMID:12946376 (Link to Abstract)

Level of Evidence 5 and Other Journal Articles (includes Case Reports, Expert Opinions, Personal Observations, and Biomechanic Studies)

Literature

Literature

Conclusion

- Forearm fx's are inherently unstable fx's
- Vast majority require operative fixation
- Goal is anatomic reduction with stable fixation
- Restore ulna length
- Restore radial bow
- Respect the soft tissue
- Don’t miss injury to joint above or below

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org