Upper Cervical Spine Trauma

Amit K. Bhandutia, MD
Daniel T. Altman, MD December 2016

Created by Daniel Gelb, MD January 2006
Updated by Robert Morgan, MD November 2010
Upper Cervical Spine Trauma

- Epidemiology
- Anatomy
- Radiographic Evaluation
- Common Injuries
- Special Considerations
Epidemiology

- 717 cervical spine fractures (657 patients over 13 years)
- C2 fractures most common
- Younger patients: C1 and C2 Hangman’s fractures more common
- Odontoid fractures evenly distributed
 - Younger patients have higher energy injuries

Ryan and Henderson Injury 1992
Upper Cervical Anatomy
Upper Cervical Anatomy

- Biomechanically specialized
 - Support of “large” cranial mass
 - Large range of motion
 - Flexion/extension
 - Axial rotation
 - 50% of cervical spine motion localized to Occ-C1-C2 articulations

Vertebral Artery Course

• Course through C1/C2 determine potential for screw placement for fixation
 – C1 lateral mass screws
 – C1-2 transarticular screws
 – C2 pedicle/pars screws

• Special attention to be paid for enlarged or aberrant foramina with low threshold for CTA/MRA for complete evaluation

Normal Vertebral Artery
Tortuous Vertebral Artery
C1 - Atlas

- Transition between cranium and c-spine
 - Occ-C1: flexion-extension
- No body (C2 dens)
- Vertebral artery foramen
- 2 arches
 - Anterior
 - Posterior
 - Vertebral artery groove

Kakarla Neurosurgery 2010
C2 Anatomy

• Dens
 – Embryological C1 body
 – Base = watershed (poorly vascularized)
 – Osteoporotic

• Flat C1-2 joints: rotation

• Vertebral artery foramen
 – Inferomedial to superolateral
Anatomy – The Axis

- Important transition point for forces within the c-spine
- Important anatomical points
 - Superior and inferior articular processes are “offset” in the AP direction- due to different functions at each articulation
 - Pars interarticularis- due to this transition is a frequent fracture site
 - Odontoid process- the “pivot” for rotation

Rockwood and Green’s Fractures in Adults
Eighth Edition Figure 44-43 p. 1729
Ligamentous Anatomy

- Provide restraint for mobile upper cervical spine (check-rein function)
- Classified according to location with respect to vertebral canal
 - Internal:
 - Tectorial membrane
 - Cruciate ligament – including transverse ligament
 - Alar and apical ligaments
 - External
 - Anterior and posterior atlanto-occipital membranes
 - Anterior and posterior atlanto-axial membranes
 - Articular capsules and ligamentum nuchae
Atlanto-Axial Anatomy

Alar Ligaments

Cruciate Ligament (Asc./Desc. Bands)

TAL
Vertebral Artery

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-17 p. 1692
Radiographic Evaluation
Plain Radiographic Evaluation

- Lateral View
 - Prevertebral Swelling
 - Soft Tissue Shadow
 - <6mm at C2
 - Concave/Flat
 - Pre-dental space ≤ 3mm
 - Atlanto-Occipital Joint Congruence
 - *Radiographic Lines (Harris Line/Powers Ratio)

- Open Mouth AP
 - Distraction
 - C1-2 Symmetry
Powers’ Ratio

- BC/OA
 - >1 considered abnormal
- Limited Usefulness
- Positive only in Anterior Translational injuries
- False Negative with pure distraction

Powers et al, Neurosurgery, 1979

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-1 p. 1691
Harris’ Lines

- **Basion-Dental Interval (BDI)**
 - Basion to Tip of Dens
 - <12 mm in 95%
 - >12 mm ABNORMAL
- **Basion-Axial Interval (BAI)**
 - Basion to Posterior Dens
 - -4-12 mm in 98%
 - >12 mm Anterior Subluxation
 - >4 mm Posterior Subluxation

>12 mm BAI/BDI abnormal

Harris et al, Am J Radiol, 1994

Rockwood and Green’s Fractures in Adults
Eighth Edition Figure 44-1 p. 1683
Radiographic Diagnosis

MRI

- Increased Signal Intensity in:
 - C0-C1 Joint
 - C1-2 Joint
 - Spinal Cord
 - Cranio-cervical ligaments
 - Pre-vertebral soft tissues

Dickman et al, J Neurosurg, 1991

Warner et al, Emerg Radiol, 1996
Upper Cervical Spine Fractures

• Common Injuries
 – Occipital Condyle Fracture
 – Craniocervical sprain?
 – C1 ring injuries
 – Odontoid Fracture
 – Hangman’s Fracture

• Uncommon Injuries
 – Craniocervical Dislocation
 – Rotatory subluxation
Occipital Condyle Fracture

- Type I
 - Impaction Fracture

- Type II
 - Extension of basilar skull fracture

- Type III
 - ALAR ligament Avulsion
 - *Must evaluate for craniocervical dissociation

Anderson/Montesano, Spine 1988
Tuli et al., Neurosurgery 1997

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-38 p. 1716
Craniocervical Dissociation

- Antlanto-Occipital Joint
- Occipito-Cervical Joint
- Cranio-cervical Joint
- Atlanto-Axial Joint
Craniocervical Dissocation

• High energy typically required to cause this injury pattern

• Commonly Fatal
 – Present 6-20% of post mortem studies
 – Alker et al, 1978
 – Bucholz & Burkhead, 1979
 – Adams et al, 1992

• 50% missed injury rate
 – 1/3 Neurological Worsening
 – Davis et al, 1993
Symptoms/Findings

- Lower Cranial nerve deficits (V, IV, VII, XII)
- Horner’s syndrome
- Cerebellar ataxia
- Often associated with Wallenberg syndrome
Wallenberg Syndrome

- Involving occlusion of posterior inferior cerebellar artery (PICA)
- Nystagmus
- CN X nerve palsy (dysphagia)
- Cerebellar ataxia
- Ipsilateral Horner’s syndrome
- Ipsilateral pain/temperature deficit over upper half of face
- **Contralateral** pain/temperature deficit over body
- Hiccups
Traynelis Classification

- Direction based classification
 - I- Anterior dislocation
 - II – Longitudinal dislocation
 - IIb – Atlantoaxial dislocation
 - III – posterior dislocation

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-34 p. 1711

Traynelis et al. J Neurosurgery 1986
Harborview classification

<table>
<thead>
<tr>
<th>Stage</th>
<th>Injury Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MRI evidence of injury to craniocervical osseoligamentous stabilizers; craniocervical alignment within 2 mm of normal, distraction of <2 mm on provocative traction</td>
</tr>
<tr>
<td>2</td>
<td>MRI evidence of injury to craniocervical osseoligamentous stabilizers; craniocervical alignment within 2 mm of normal, distraction of >2 mm on provocative traction</td>
</tr>
<tr>
<td>3</td>
<td>Craniocervical malalignment of >2 mm on static radiographs</td>
</tr>
</tbody>
</table>

Cranio-cervical sprain (stage 1) may be treated non-operatively

Bellabarba et al. Spine 2006
Craniocervical Dissociation

- Treatment
 - Emergency Room
 - Collar/sandbag/tape
 - Halo vest
 - Minimize transfers!
 - Keep cranium on cervical spine
 - Definitive
 - Posterior occipitocervical fusion
 - ALWAYS include C1 and C2
Atlas Fractures

- Anterior Arch
- Posterior Arch
- Jefferson (Displaced vs. Nondisplaced)
- Lateral Mass Fracture
- *Transverse Ligament injury
Atlas Fractures - Treatment

Collar

1. Isolated anterior arch
2. Isolated posterior arch
3. Non-displaced Jefferson fracture
Transverse Ligament Injury

- Represented by combined lateral mass overhang of >6.9 mm
 - Spence et al. JBJS 1970
- Lateral mass overhang of >8.1 mm when assessed by radiographs secondary to magnification error
 - Heller et al. JSDT 1993
- Normal imaging to the right

Rockwood and Green’s Fractures in Adults
Eighth Edition Figure 43-6 p. 1661/1690
Atlas Fractures - Treatment

- Displaced <6.9 mm/8.1 mm
 - Halo vest for 3 months
- Displaced >6.9 mm/8.1 mm
 - Halo traction (reduction) *
 several weeks followed by halo vest
 - Immediate halo vest
 - Posterior C1-2 fusion
 (unable to tolerate halo)
- After brace treatment complete
 confirm C1-2 stability
 - Flexion/extension films
 - **C1-2 fusion for AADI > 5mm**
- Halo falling out of favor for collar with non-operative treatment…

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-3 p. 1684
Transverse ligament avulsion

- Bony avulsions may heal with nonoperative management
- TAL rupture (ligamentous) does not heal with nonoperative management and requires C1-C2 arthrodesis
Atlas Fractures - Techniques

- Fusion options
 - Gallie (spinous process wiring)
 - **Post-op halo**
 - Brooks/Jenkins (sublaminar/spinous process wiring)
 - C1/C2 Transarticular Screws
 - most dependent on vertebral artery anatomy
 - C1 lateral mass/C2 pars-pedicle screws
 - Direct Osteosynthesis of C1
Odontoid Fractures

• Most common fracture of Axis
 – (nearly 2/3 of all C2 Fxs)
• 10 – 20 % of all cervical fractures
• Bimodal distribution
 – Young - high energy, multi-trauma
 – Elderly - low energy, isolated injury
 • Most common C-spine fracture elderly
Elderly and the Odontoid

- **Platzer Studies**
 - Elderly increased pseudarthrosis rate (12% v. 8%)
 - Elderly tolerated pseudarthrosis well (1/5)
 - Elderly tolerated halo well
 - 10% mortality (4/41)
 - 22% complication rate

- **Chapman studies**
 - Elderly did not heal the odontoid fracture (4/17)
 - Elderly tolerated halo well (7/8)
 - 15% mortality (3/20)

- **Harrop and Vaccaro**
 - 9/10 “union”
 - 5/10 postop halo
 - 1/10 perioperative death

- **Multiple series of high mortality rates**

 - Platzer et al. Spine 2007
 - Platzer et al. Neurosurgery 2007
 - Platzer et al. Spine 2008
 - Kuntz et al./Chapman Neurosurg Focus 2000
 - Harrop et al. Neurosurg Focus 2000
Anderson and D’Alonzo Fracture Classification

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>2% (2/49)</td>
</tr>
<tr>
<td>Type II</td>
<td>50-75% (32/49)</td>
</tr>
<tr>
<td>Type III</td>
<td>15-25% (15/49)</td>
</tr>
</tbody>
</table>

Anderson/D’Alonzo JBJS 1974

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-41 p. 1723
Acute Management

• Spinal cord injury rare (17/226)

• Airway compromise
 – 0/8 nondisplaced
 – 1/21 anterior displacement
 – 13/32 posterior displacement (2 deaths)

Don’t do flexion reductions!

Harrop et al. Neursurg Focus 2000
Przybylski et al. Neursurg Focus 2000
Definitive Treatment Options

Type 1
- C-Collar
- Beware of unrecognized craniocervical dissociation

Type 3
- C-Collar (10-15% nonunion)
- SOMI brace
- Halo vest

Traynelis et al. Neurosurg Focus 2000

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-41 p. 1723
Treatment Options

Type 2

- C-Collar
- SOMI / Minerva
- Halo Vest
- Odontoid Screw
- C1-2 posterior fusion

Rockwood and Green’s Fractures in Adults
Eighth Edition Figure 44-41 p. 1723
Risk factors for nonunion in Type II odontoid fractures

- Secondary to watershed blood supply
- Higher ratio of cortical to cancellous bone
- Displacement > 6mm (assoc. w/ >50% nonunion rate)
- Age > 50 y
- Fx Comminution
- Angulation >10 degrees
- Treatment delay > 4 days

Koivikko et al. JBJS Br 2004
Anterior Odontoid Screw Fixation

Indications
- Displaced Type II, Shallow Type III
- Polytrauma patient
- Unable to tolerate halo-vest
- Early displacement despite halo-vest
- (Reduces in extension)

Contraindications
- Non-reducible odontoid fracture
- (Reduces in flexion)
- Body habitus (Barrel chest)
- Associated TAL injury
- Subacute injury (> 6 months)
- Reverse oblique
- (elderly)

Anterior Odontoid Screw

Advantages
- Direct fracture osteosynthesis
- Maintenance of C1-C2 motion
- Minimal EBL
- Decreased wound issues vs. posterior approach
- More useful for young patient

Disadvantages
- Requires favorable patient anatomy
 - Must not have:
 - Barrel chest
 - Congenital cervical fusion
 - Thoracic kyphosis
 - Cervical stenosis
- Reverse obliquity/comminution
- Irreducible fracture
- Requires intact transverse ligament
- Higher incidence of dysphagia in elderly
- Higher failure rate in osteoporotic Bone

Vaccaro et al. JBJS 2013
Subach et al. Neurosurgery 1999
Rushton et al. JSDT 1997
Chiba et al. JSDT 1996
Anterior Screw Technique

- Smith Robinson approach (Skin incision at C5)
- Neck in slight extension
- Wine cork/bite block for open mouth views
- Biplanar fluoroscopy

- Need to enter body caudal portion of promontory
 - Partial C2/3 discectomy
- Midline for single screw placement
Anterior Screw Technique

- Critical to cross rostral cortex
- Critical to use lag screw technique
- Limited evidence for second screw

One or Two Screws?

- No significant difference biomechanically
 - Sasso et al. Spine 1993
 - Graziano et al. Spine 1993
- No difference clinically
 - Apfelbaum et al. J Neurosurg 2000
Apfelbaum Clinical Outcomes

- 147 patients
 - 129 (117) <6 months
 - 18 > 6 months
- 88% fusion rate
 - Recent fractures
 - Horizontal and posterior oblique
 - No difference between one or two screws
- 25% fusion rate in remote fractures
- 10% implant complication
 - Screw pullout of C2 body
- 1% perioperative mortality
 - 6% within 30 days

Apfelbaum et al. J Neurosurg 2000
Posterior Odontoid Stabilization

- Options
 - Posterior wiring
 - Up to 25% pseudoarthrosis
 - Largely falling out of favor due to C1/C2 screw techniques which do not require intact posterior arch in addition to postop immobilization
 - Transarticular screw fixation
 - [Magerl and Steeman Cerv Spine 1987]
 - [Reilly et al JSD 2003]
 - Cannot perform with aberrant vascular anatomy
 - Requires reduction prior to screw placement
 - C1 lateral mass - C2 pars/pedicle/lamina screw
 - First described by Laheri/Goel; modified by Harms/Melcher for use with screw rod construct
C1 LATERAL MASS SCREWS
C2 SCREW PLACEMENT
Pedicle

Pars

Trans-articular

C2 pars/pedicle
Posterior Fusion Summary

• Catastrophic failures reported for trans-articular screws alone
• Trans-articular screws with wired bone graft is stiffest construct
 – Requires intact C1 lamina
 – Requires reducible C1-2 facets
 – Requires favorable anatomy
• Gallie wiring is inadequate without two supplemental screws
• No advantage of either wiring construct with two transarticular screws
• Harm’s technique is most flexible

Harms and Melcher Spine 2001
Hott et al. J Neurosurg Spine 2005
Traumatic Spondylolisthesis Axis (Hangman’s Fracture)

- Second most common fracture of axis
 - 25% of C2 injuries
- Most common mechanism of injury is MVA
Hangman’s Fracture

- Younger age group (Avg. 38 yrs)
- Usually due to hyperextension-axial compression forces (windshield strike)
- Neurologic injury seen in only 5-10% (acutely decompresses canal)
- Traditional treatment has been Halo vest
- Collar adequate if < 6 mm displaced
 - Coric et al. JNS 1996
Hangman’s Fracture

- Border of craniocervical and subaxial spine
- Intact disk defines Type I
- Halo treatment difficult with torn disk (types II and III)
- Avoid traction in type IIa

Rockwood and Green’s Fractures in Adults Eighth Edition Figure 44-43 p. 1729
Hangman’s Fracture Treatment

Types II and III

Posterior
- Open reduction and C1-C3 fusion
- Direct pars repair and C2-C3 fusion

Anterior
- C2/C3 ACDF with instrumentation
Atlanto-axial Rotatory Subluxation

- Rare injury
- More commonly seen in pediatric population
- Treatment dependent on timing of subluxation
- Evaluate with careful patient history and use of rotatory CT

<table>
<thead>
<tr>
<th>Fielding</th>
<th>Odontoid Pivot</th>
<th>Anterior Displacement with One Lateral Articular Process Pivot</th>
<th>Posterior Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type 1</td>
<td>Type 2 (3-5 mm)</td>
<td>Type 3 (>5 mm)</td>
</tr>
</tbody>
</table>

Fielding and Hawkins JBJS 1977
Atlanto-axial Rotatory Subluxation

<table>
<thead>
<tr>
<th>Fielding</th>
<th>Odontoid Pivot</th>
<th>Anterior Displacement with One Lateral Articular Process Pivot</th>
<th>Posterior Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fielding</td>
<td>Type 1</td>
<td>Type 2 (3-5 mm)</td>
<td>Type 3 (>5 mm)</td>
</tr>
</tbody>
</table>

Treatment Options

- Traction/halo
- Posterior fusion
- Lateral facetectomy, reduction, fusion
- Transoral facetectomy, reduction, fusion

Fielding and Hawkins JBJS 1977
Halo Immobilization
Pin Placement

• Pin placement below **equator** of skull

• Anterior Placement just over lateral 1/3rd of eyebrow
 – Too lateral forces insertion into thin lateral bone
 – Too medial risks injury to supraOrbital nerve and supraTrochlear nerve [OT TO]

• Posterior pin placement above pinnae (below equator of skull)
Halo in Elderly

- Tashijan et al. J. Trauma 2006
 - 78 patients, age > 65yo
 - Type II or III odontoid fractures
 - Increased early morbidity and mortality
 - Compared with treatment using operative fixation or rigid collar

- Van Middendorp et al. JBJS 2009
 - 239 patients
 - All ages in halo
 - No increased risk of pneumonia or death in patients >65 years old

Beware of the halo in the elderly population!

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org