Open Fractures of the Tibial Diaphysis

Daniel N. Segina, MD
Robert V. Cantu, MD
David Templeman, MD

Created March 2004
Updated May 2010
Incidence

- Open fractures of the tibia are more common than in any other long bone.

- Rate of tibial diaphysis fractures reported from 2 per 1000 population to 2 per 10,000 and of these approximately one fourth are open tibia fractures*

*Court-Brown; McBirnie JBJS 1995
Mechanism of Injury

- Can occur in lower energy, torsional type injury (e.g., skiing)
- More common with higher energy direct force (e.g. car bumper)
Priorities

- ABC’S
- Assoc Injuries
- Tetanus
- Antibiotics
- Soft Tissue Management
- Fixation
- Long term issues
Physical Examination

- Given subcutaneous nature of tibia, deformity and open wound usually readily apparent

- Circumferential inspection of soft tissue envelope, noting any lacerations, ecchymosis, swelling, and tissue turgidity
Physical Exam

- Neurologic and vascular exam of extremity including ABI’s if indicated Johansen K, *J Trauma* April 1991
- Wounds should be assessed once in ER, then covered with sterile gauze dressing until treated in OR- digital camera / cell phone
- True classification of wound best done after surgical debridement completed
Radiographic Evaluation

- Full length AP and lateral views from knee to ankle required for all tibia fractures
- Ankle views suggested to examine mortise
- Arteriography indicated if vascular compromise present after reduction
Associated Injuries

- Approximately 30% of patients have multiple injuries
- Fibula commonly fractured and its degree of comminution correlates with severity of injury
- Proximal or distal tib-fib joints may be disrupted
- Ligamentous knee injury and/or ipsilateral femur (‘floating knee’) more common in high energy fractures
Associated Injuries

- Neurovascular structures require repeated assessment
- Foot fractures also common
- Compartment syndrome must be looked for
Antibiotics


- First Generation Cephalosporin
- +/- Aminoglycoside
- +/- Pen G or Clindamycin if Pen allergic
- No Cipro alone Patzakis MJ, J Orthop Trauma Nov 2000
- 24-72hr course
Classification of Open Tibia Fractures

- Gustilo and Anderson open fracture classification first published in 1976 and later modified in 1984
- In one study interobserver agreement on classification only 60%

Table 2 Gustilo Classification of Open Fractures

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Clean wound &lt;1 cm in length</td>
</tr>
<tr>
<td>II</td>
<td>Clean wound &gt;1 cm in length without extensive soft-tissue damage, flaps, or avulsions</td>
</tr>
<tr>
<td>IIIA</td>
<td>Adequate soft-tissue coverage despite extensive soft-tissue damage, flaps, or high-energy trauma irrespective of the wound size</td>
</tr>
<tr>
<td>IIIB</td>
<td>Inadequate soft-tissue coverage with periosteal stripping, often associated with massive contamination</td>
</tr>
<tr>
<td>IIIC</td>
<td>Arterial injury requiring repair</td>
</tr>
</tbody>
</table>
Objectives of Surgical Treatment

- Prevent Sepsis
- Achieve Union
- Restore Function
Treatment of Soft Tissue Injury

- After initial evaluation, wound covered with sterile dressing and leg splinted.
- Appropriate tetanus prophylaxis and antibiotics begun.
- Thorough debridement and irrigation undertaken in OR within 6 hours if possible.
- Photo documentation.
Treatment of Soft Tissue Injury

- Careful planning of skin incisions
- Longitudinal incisions / “Z” plasty
- Essential to fully explore wound as even Type 1 fractures can pull dirt/debris back into wound and on fracture ends
- All foreign material, necrotic muscle, unattached bone fragments, exposed fat and fascia are debrided
Irrigation

- **Saline +/- surfactants (soap)** Anglen J, Removal of surface bacteria by irrigation. *J Orthop Res* 1996

- **Pressure – avoid high pressure / pulse lavage** Polzin B, Removal of surface bacteria by irrigation. *J Orthop Res* 1996

- **Timing > 6 hrs** Crowley DJ, Debridement and wound closure of open fractures: The impact of the time factor on infection rates. *Injury* 2007
Treatment of Soft Tissue Injury

- After debridement thorough irrigation with Ringer’s lactate or normal saline
- Fasciotomies performed if indicated even in open fractures
- After I+D new gowns, gloves, drapes and sterile instruments used for fracture fixation
Bone Defects

- PMMA –aminoglycoside +/- vancomycin
- Bead pouch
- Solid spacer
Bone Defects: Bead Pouch

Bone Defects: PMMA Spacer

Masquelet AC, Reconstruction of the long bones by the induced membrane and spongy autograft [French]. Ann Chir Plast Esthet 2000
Large Fragments: What to do?

- Infection Rates with retained - 21%
- Infection Rates with removed- 9%

Edwards CC, Severe open tibial fractures. Results treating 202 injuries with external fixation. CORR, 1998

- Use to assist in determining length, rotation and alignment
Soft Tissue Coverage

- Definitive coverage should be performed within 7-10 days if possible.

- Most type 1 wounds will heal by secondary intent or can be closed primarily. Hohmann E, Comparison of delayed and primary wound closure in the treatment of open tibial fractures. Arch Orthop Trauma Surg 2007

- Delayed primary closure usually feasible for type 2 and type 3a fractures.
Soft Tissue Coverage

- Type 3b fractures require either local advancement or rotation flap, split-thickness skin graft, or free flap
- STSG suitable for coverage of large defects with underlying viable muscle
Soft Tissue Coverage

- Proximal third tibia fractures can be covered with gastrocnemius rotation flap

- Middle third tibia fractures can be covered with soleus rotation flap

- Distal third fractures usually require free flap for coverage
Stabilization of Open Tibia Fractures

- Multiple options depending on fracture pattern and soft tissue injury:
  - IM nail - reamed vs. unreamed
  - External fixation
  - ORIF
IM Nail

- Excellent results with type 1 open fractures
Unreamed IM Nail

- Time to union with unreamed nails can be prolonged - in one study of 143 open tibia fractures, 53% were united at 6 months.

- Vast majority of fractures united, but 11% required at least one secondary procedure to achieve union.*

* Tornetta and McConnell 16th annual OTA 2000
In one study of type 2 and type 3a fractures good results- average time to union 24 and 27 weeks respectively; deep infection rate 3.5%*

Complications increased with type 3b fractures- average time to union was 50 weeks and infection rate 23%*

*Court-Brown JBJS 1991
External Fixation

- Compared to IM nails, increased rate of malunion and need for secondary procedures
- Most common complication with ex-fix is pin track infection (21% in one study)*

*Tornetta JBJS 1994
Conversion from Ex-Fix to IM Nail

Bhandari M, Intramedullary nailing following external fixation in femoral and tibial shaft fractures. *J Orthop Trauma* 2005

- Conversion between ex-fix and IM nail
- 9% infection 90% union
- Infection rates decreased with shorter duration of ex-fix time
Plate Fixation

- Traditional plating technique with extensive soft tissue dissection and devitalization has generally fallen out of favor for open tibia fractures.

- Increased incidence of superficial and deep infections compared to other techniques.

- In one study, 13% of patients developed osteomyelitis after plating compared to 3% of patients after ex-fix.*

* Bach and Handsen, Clin Orthop 1989
Percutaneous Plate Fixation

- Newer percutaneous plating techniques using indirect reduction may be a more beneficial alternative

- Large prospective studies yet to be evaluated
Gunshot Wounds

- Tibia fractures due to low energy missiles rarely require debridement and can often be treated like closed injuries.

- Fractures due to high energy missiles (e.g. assault rifle or close range shot gun) treated as standard open injuries.
Amputation

- In general amputation performed when limb salvage poses significant risk to patient survival, when functional result would be better with a prosthesis, and when duration and course of treatment would cause intolerable psychological disturbance.
Mangled Extremity Severity Score

- An attempt to help guide between primary amputation vs. limb salvage
- In one study a score of 7 or higher was predictive of amputation*

*Johansen et al. J Trauma 1991

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Skeletal and soft tissue injury</td>
<td></td>
</tr>
<tr>
<td>Low energy (stab; simple fracture; “civilian gunshot wound”)</td>
<td>1</td>
</tr>
<tr>
<td>Medium energy (open or multiplex fractures, dislocation)</td>
<td>2</td>
</tr>
<tr>
<td>High energy (close-range shotgun or “military” gunshot wound, crush injury)</td>
<td>3</td>
</tr>
<tr>
<td>Very high energy (same as above plus gross contamination, soft tissue avulsion)</td>
<td>4</td>
</tr>
<tr>
<td>B. Limb ischemia (score is doubled for ischemia &gt;6 hours)</td>
<td></td>
</tr>
<tr>
<td>Pulse reduced or absent but perfusion normal</td>
<td>1</td>
</tr>
<tr>
<td>Pulseless; paresthesias, diminished capillary refill</td>
<td>2</td>
</tr>
<tr>
<td>Cool, paralyzed, insensate, numb</td>
<td>3</td>
</tr>
<tr>
<td>C. Shock</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure always &gt;90 mm Hg</td>
<td>0</td>
</tr>
<tr>
<td>Hypotensive transiently</td>
<td>1</td>
</tr>
<tr>
<td>Persistent hypotension</td>
<td>2</td>
</tr>
<tr>
<td>D. Age (yr)</td>
<td></td>
</tr>
<tr>
<td>&lt;30</td>
<td>0</td>
</tr>
<tr>
<td>30–50</td>
<td>1</td>
</tr>
<tr>
<td>&gt;50</td>
<td>2</td>
</tr>
</tbody>
</table>
Amputation

- Lange proposed two absolute indications for amputation of tibia fractures with arterial injury: crush injury with warm ischemia greater than 6 hours, and anatomic division of the tibial nerve*

*Lange et al. J Trauma 1985
**LEAP Study**


<table>
<thead>
<tr>
<th>Scoring Systems*</th>
<th>MESS</th>
<th>LSI</th>
<th>PSI</th>
<th>NISSSA</th>
<th>HFS-97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Warm ischemia time</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bone injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Muscle injury</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nerve injury</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Deep-vein injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Skeletal/soft-tissue injury</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Time to treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*MESS = Mangled Extremity Severity Score; LSI = Limb Salvage Index; PSI = Predictive Salvage Index; NISSSA = Nerve Injury, Ischemia, Soft-Tissue Injury, Skeletal Injury, Shock, and Age of Patient Score; and HFS-97 = Hannover Fracture Scale (1997 version).*
LEAP Study

- Plantar sensation not prognostic
- Scoring systems do not work
- Predictors of outcome
- Salvage vs Amputation about equal

<table>
<thead>
<tr>
<th>Table 1 Predictors of a Poor Sickness Impact Profile Score at 2 and 7 Years Following Lower Extremity Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2-year Patient Predictors</strong></td>
</tr>
<tr>
<td>Rehospitalization for a major complication</td>
</tr>
<tr>
<td>Low education level</td>
</tr>
<tr>
<td>Nonwhite race</td>
</tr>
<tr>
<td>Poverty</td>
</tr>
<tr>
<td>Lack of private health insurance</td>
</tr>
<tr>
<td>Poor social support network</td>
</tr>
<tr>
<td>Low self-efficacy</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Involvement in disability compensation litigation</td>
</tr>
<tr>
<td><strong>7-year Patient Predictors</strong></td>
</tr>
<tr>
<td>Older age</td>
</tr>
<tr>
<td>Female sex</td>
</tr>
<tr>
<td>Nonwhite race</td>
</tr>
<tr>
<td>Lower education level</td>
</tr>
<tr>
<td>Living in a poor household</td>
</tr>
<tr>
<td>Current or previous smoking</td>
</tr>
<tr>
<td>Low self-efficacy</td>
</tr>
<tr>
<td>Poor self-reported health status before injury</td>
</tr>
<tr>
<td>Involvement in disability compensation litigation</td>
</tr>
</tbody>
</table>
Complications

• Nonunion
• Malunion
• Infection - deep and superficial
• Compartment syndrome
• Fatigue fractures
• Hardware failure
Nonunion

- Time limits vary from 6 months to one year
- Fracture shows no radiologic progress toward union over 3 month period
- Important to rule out infection
- Treatment options for uninfected nonunions include onlay bone grafts, free vascularized bone grafts, reamed nailing, compression plating, or ring fixator
Malunion

- In general varus malunion more of a problem than valgus

- In one study deformity up to 15 degrees did not produce ankle complications*

- For symptomatic patients with significant deformity treatment is osteotomy

Deep Infection

- Often presents with increasing pain, wound drainage, or sinus formation

- Treatment involves debridement, stabilization (often with ex-fix), coverage with healthy tissue including muscle flap if needed, IV antibiotics, delayed bone graft of defect if needed
Deep Infection

- Not the Implant but the Management of the Soft Tissues
- If IM nail already in place, reamed exchange nail with appropriate antibiotics may prove adequate treatment
- Staged reconstruction with the use of PMMA + antibiotics
Superficial Infection

- Most superficial infections respond to elevation of extremity and appropriate antibiotics (typically gram + cocci coverage)

- If uncertain whether infection extends deeper and/or it fails to respond to antibiotic treatment, then surgical debridement with tissue cultures necessary
Compartment Syndrome

- Diagnosis same as in closed tibial fractures
- Common with high energy tibia fractures
- Release ALL 4 compartments
Reamed vs Unreamed: SPRINT Trial
Bhandari M, Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures *JBJS*, 2008

- Possible benefit of reamed IM nails in closed fractures
- No difference in open fractures
- Delaying reoperation for nonunion for at least 6 months significantly lowers the need for reoperation
Hardware Failure

- Usually due to delayed union or nonunion
- Important to rule out infection as cause of delayed healing
- Treatment depends on type of failure- plate or nail breakage requires revision, whereas breakage of locking screw in nail may not require operative intervention
Negative Pressure Wound Therapy (NPWT)


- Cannot lower infection rates for Type IIIB open fractures Bhattacharyya T, Routine use of wound vacuum-assisted closure does not allow coverage delay for open tibia fractures. *Plast Reconstr Surg* 2008
BMPs

- BMP-2 (Infuse) FDA approval in subset of open tibia fractures BESTT study group JBJS 84, 2002
- Significant reduction in the incidence of secondary procedures
- Accelerated healing
- Lower infections
Outcomes

- Outcome most affected by severity of soft tissue and neurovascular injury

- Most studies show major change in results between type 3a and 3b/c fractures

- In one study of reamed nailing, the deep infection rate was 3.5% for type 2 and 3a fractures, but 23% for type 3b fractures*

*Court-Brown JBJS 1991
Outcomes

- For type 3b and 3c fractures early soft tissue coverage gives best results

- In one study of 84 type 3b and 3c fractures, results with single stage procedure involving fixation with immediate flap coverage better than when coverage delayed more than 72 hours (deep infection 3% vs. 19%)*

*Gopal et al. JBJS[Br] 2000
Suggested treatment algorithm

Melvin JS, Open Tibial Shaft Fractures: I and II, *JAAOS*, Jan-Feb 2010
Summary

- Different injury in young and old
- Important injury in both young and old
- Understand goals of treatment
- Maximize outcome with least iatrogenic risk

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org