Femoral Neck Fractures

Carol Lin, MD & Brad Merk, MD

Original Authors:
Brian Boyer, MD; March 2004
Steven A. Olson, MD; March 2006
James C. Krieg, MD; May 2011

Revised: March 2016
Epidemiology

• > 300,000 Hip fractures annually in the US
 – Accounts for 30% of all hospitalizations
 – Expected to surpass 6 million annually worldwide by 2050

• Significant morbidity, mortality, expense
 – $10-15 billion/year in the US

www.ahrq.gov/data/hcup; Kannus et al, Bone 1996; Dy et al, JBJS 2011
Epidemiology: Bimodal Distribution

• Elderly
 – incidence doubles each decade beyond age 50
 – higher in caucasians
 – smokers, lower BMI, excessive caffeine & ETOH

• Young
 – high energy trauma
Anatomy

- Physeal closure age 16
- Neck-shaft angle
 \[130^\circ \pm 7^\circ\]
- Anteversion
 \[10^\circ \pm 7^\circ\]
- Calcar Femorale
 Posteromedial
dense plate of bone

Blood Supply

• Lateral epiphysel artery
 – terminal branch MFC artery
 – predominant blood supply to weight bearing dome of head

• After fracture, blood supply depends on retinacular vessels

Blood Supply

- Greater fracture displacement = greater risk of retinacular vessel disruption

- Tamponade effect of blood in intact capsule
 - Theoretical risk of AVN with increased pressure
Diagnosis

- **Plain Film**
 - Consider traction-internal rotation view if comminuted

- **CT scan**
 - Displacement
 - comminution
Diagnosis

• MRI
 – For evaluation of occult femoral neck fracture
 • Consider MRI in an elderly patient who is persistently unable to weight bear
 – 100% sensitive and specific
 • May reduce cost by shortening time to diagnosis

Verbeeten et al, Eur Radiol 2005
Classification

• Garden (1961)
 – Degree of displacement
 – Relates to risk of vascular disruption
 – Most commonly applied to geriatric/insufficiency fractures
Garden Classification

I Valgus impacted or incomplete

II Complete Non-displaced

III Complete Partial displacement

IV Complete Full displacement
Garden Classification

• Poor interobserver reliability

• Modified to:
 – Non-displaced
 • Garden I (valgus impacted)
 • Garden II (non-displaced)
 – Displaced
 • Garden III and IV
Classification

• Pauwels (1935)
 – Fracture orientation
 – Relates to biomechanical stability
 – More vertical fracture has more shear force
 – More commonly applied to younger patients or higher energy fractures
Pauwels Classification

stable Less stable unstable

Treatment Goals: Geriatric Patients

• Mobilize
 – Weight bearing as tolerated
 – Minimize period of bedrest

• Minimize surgical morbidity
 – Safest operation
 – Decrease chance of reoperation
Treatment Goals: Young Patients

- Spare femoral head
- Avoid deformity
 - Improves union rate
 - Optimal functional outcome
- Minimize vascular injury
 - Avoid AVN
Treatment Options

• Non-operative
 • Limited role
 • Usually high operative risk patient
 • Valgus impacted fracture
 • Elderly need to be WBAT
 • Mobilize early
Treatment Options

• Reduction and fixation
 – Open or percutaneous

• Arthroplasty
 – Hemi or total
Decision Making Variables: Patient Factors

- Young (active)
 - High energy injuries
 - Often multi-trauma
 - Often High Pauwels Angle (shear)

- Elderly
 - Lower energy injury (falls)
 - Comorbidities
 - Pre-existing hip disease
Decision Making Variables: Fracture Characteristics

- Displacement
- Stability
 - Pauwels angle
 - Comminution, especially posteromedial
Pre-operative Considerations

- Traction not beneficial
 - No effect on fracture reduction
 - No difference in analgesic use
 - Pressure sore/ skin problems
 - Increased cost
 - Traction position decreases capsular volume
 - Capsule volume greatest in flexion/external rotation
 - Potential detrimental effect on blood flow by increasing intracapsular pressure
Pre-operative Considerations: Timing of ORIF in Young

• Surgical Urgency
 • may unkink vessels
 • Release tamponade in capsule

• Effect of time to reduction controversial but generally try to get reduced and fixed within 12-24 hours

Time to Surgery

DIFFERENCE

- Jain et al, JBJS Am 2002
 - < 60 years old, 12 hr cutoff
 - 6/38 (16%) with AVN in delayed group vs 0/15 in early group

- Duckworth et al, JBJS Br 2011
 - > 24 hr to surgery associated with failure

NO DIFFERENCE

- Swiontkowski et al, JBJS Am 1984, 12 hr cutoff
 - 20% AVN in < 8 & > 36 hr groups

- Haidukewych, JBJS Am 2004
 - < 50 years old, 24 hr cutoff
 - 20% AVN in both groups
 - Displacement and reduction most important
Capsular Tamponade

• Bonnaire et al, CORR, 1998
 – Prospective Study
 – Increased pressure at 6 hr; 24 hrs; 2 weeks
 – Displaced and nondisplaced equal
 – Pressure increases with extension and internal rotation
 – 75% had increased pressure and hemarthrosis

• No clinical proof of efficacy, but basic science data compelling
Capsulotomy?

- During open reduction or percutaneously
 - Reduces intracapsular pressure from fracture hematoma
 - Bonnaire et al, CORR 1998
 - Harper et al, JBJS Br 1991
 - Holmberg et al, CORR 1987

- Increased capsular pressure not clinically associated with AVN
 - Maruenda et al, CORR 1997
 - 80% of patients with AVN had low intracapsular pressure
 - Vascular damage at time of injury may be more important
Pre-operative Considerations: Geriatric

• Surgical Timing
 – Surgical urgency in relatively healthy patients
 • decreased mortality, complications, length of stay
 – Surgical delay up to 72 hours for medical stabilization warranted in unhealthy patients

 – 2.25 increase in MORTALITY if > 4 day delay
 • Most likely related to increased severity of medical problems

Moran et al, JBJS Am 2005
Pre-operative Considerations: Geriatric

- **Regional vs. General Anesthesia**
 - Mortality / long term outcome
 - No Difference
 - Regional
 - Lower DVT, PE, pneumonia, resp depression, and transfusion rates
 - **Further investigation** required for definitive answer
Treatment Issues: Young patient

- Open reduction
 - Improved accuracy
 - Decompresses capsule

- Closed reduction
 - Less surgical morbidity

- May have greater risk of infection
Closed versus Open Reduction

- Upadhyay et al, JBJS Br 2004
 - Prospective RCT comparing open versus closed reduction with cannulated screws
 - 102 patients < 50 years old
 - No difference in AVN or nonunion
 - Posterior comminution, poor reduction, and poor screw placement associated with nonunion
 - > 48 hours to surgery in both groups
 - Varying constructs
Closed versus Open Reduction

Evidence based update: Open versus closed reduction

Pouria Ghayoumia,1, Utku Kandemirb,2, Saam Morshedb,*

aUniversity of California, San Francisco School of Medicine, United States
bUniversity of California, San Francisco, Orthopaedic Trauma Institute at San Francisco General Hospital, United States

- Higher rate of deep infection in open reduction group
 - 0.5\% versus 4\%

- No difference in AVN
 - 17\% in both groups

- No difference in nonunion
 - 12\% in closed group versus 15\% in open group (p = 0.25)
Closed versus Open Reduction

• Closed versus open reduction does not seem to affect nonunion or AVN rates but data is very limited
 – MUST achieve an appropriate reduction regardless of either method
Closed Reduction

- Flexion, slight adduction, slight traction
- Apply traction, internally rotate to 45 degrees, followed by full extension, slight abduction
Open approach

• Smith-Peterson
 – Direct access to fracture
 – Between TFL and sartorius
 – Second approach needed for fixation

• Heuter modification
 – Skin incision over TFL to avoid injury to LFCN
 – Interval same as Smith-Peterson
Open approach

• **Watson-Jones**
 – anterolateral
 – Between TFL and gluteus medius
 – Same approach for fixation
 – Best for basicervical
Open Reduction Technique

- Fracture table or flat jackson
 - Radiolucent under pelvis
- Use schanz pins, weber clamps, or jungbluth clamp for reduction
Fixation Constructs

- **3 Screws**
 - Holmes, 1993
 - Swiontkowski, 1986
 - Swiontkowski, 1987
 - Springer, 1991

- **4 Screws**
 - Kauffman, 1999

- **Dynamic hip screw**
 - Holmes, 1993

- **Blade plate**
 - Broos, 1998
Fixation Concepts

- Reduction makes it stable
 - Avoid ANY varus
 - Avoid inferior offset

- Malreduction likely to fail
Fixation Concepts

• Screw position matters
 - Booth et al, Orthopedics 1998
 • Inferior within 3 mm of cortex
 • Posterior within 3 mm of cortex
 • Need a screw resting on calcar
 - Threads should end at least 5mm from subchondral bone
 - Multiple " around the world views to check appropriate depth
 - Avoid posterior/superior
 • to avoid iatrogenic vascular damage
 - Should not start below level of lesser trochanter
 • Avoid stress riser
Fixation Concepts

- Good spread
- Hugging Calcar and posterior cortex
- Posterior and inferior screws are most important

- Clustered together
- Nothing on calcar
Fixation Concepts

• Screw position matters
 – Inferior within 3 mm of cortex
 – Posterior within 3 mm of cortex
 – Avoid posterior/superior
 • to avoid iatrogenic vascular damage
Fixation Concepts

- Sliding hip screw
 - May help with comminution
 - Basicervical
 - Accessory screw for rotation
Fixation Concepts

• Sliding hip screw
 – May help with comminution
 – Basicervical
 – Accessory screw for rotation
 • Can use small frag plate for reduction as well
Most RCT included elderly patients

Retrospective cohort studies
 - Liporace et al, JBJS Am 2008
 - Fixed angle (mix of devices) versus cannulated screws (multiple configurations)
 - 19% nonunion in screws versus 9% nonunion in fixed angle. Not statistically significant

 - Hoshino et al, OTA 2013 paper 54
 - Higher reoperation rate with cannulated screw (pauwel’s configuration)
Cannulated Screws versus Sliding Hip Screw

• Gardner et al, J Orthopaedics 2015
 – Retrospective review of 3 level 1 trauma centers
 – 40 sliding hip screw, 29 cannulated screws
 – Poor reduction highly significant for failure
 – Cannulated Screws had higher short term failure
Outcomes

- Slobogean et al, Injury 2015
 - 20% rate of reoperation

- Pollak et al, OTA 2012
 - at 1 year, patients with no complications reach population norm SF-36
 - with complication substantially disabled
 - Especially malunion

- Fewer than 1/3 of published studies include functional outcomes and < 5% included validated HRQoL scoring
What about Shortening?

- Healed FNF with shortening associated with poorer functional outcomes
 - 56 patients
 - 30% with 1cm neck shortening, 8mm femoral shortening
 - Similar in both nondisplaced and displaced patients
Outcomes

• Haidukewych et al, JBJS Am 2004
 – 10% conversion to THA at 2 years
 – 20% at 12 years
 – 65% at 14 years
YOUNG FNF Summary

• Femoral neck fractures in < 60.
 – take physiology and activity into account

• Ideally, fix within 24 hours

• Reduction is likely more important than:
 – Capsulotomy
 – Type of approach
 – Method of fixation

• Follow closely for shortening, AVN and nonunion
Treatment Issues: Geriatric Patients

- **Fixation**
 - Lower surgical risk
 - Higher risk for reoperation

- **Replacement**
 - Higher surgical risk (EBL, etc.)
 - Fewer reoperations
 - Better function

[Lu-yao JBJS 1994]
[Iorio CORR 2001]
Treatment Issues: Geriatric Patients

- **Fixation**
 - Stable (valgus impacted) fractures
 - Minimally displaced fractures

- **Replacement**
 - Displaced fractures
 - Unstable fractures
 - Poor bone quality

[Lu-yao JBJS 1994]
[Iorio CORR 2001]
Arthroplasty Issues: Hemiarthroplasty versus THA

- **Hemi**
 - More revisions
 - 6-18%
 - Smaller operation
 - Less blood loss
 - More stable
 - 2-3% dislocation

- **Total Hip**
 - Fewer revisions
 - 4%
 - Better functional outcome
 - More dislocations
 - 11% early
 - 2.5% recurrent

[Cabanela, Orthop 1999]
[Lu –Yao JBJS 1994]
[Iorio CORR 2001]
Hemiarthroplasty Issues: Unipolar vs. Bipolar

- **Unipolar**
 - Lower cost
 - Simpler

- **Bipolar**
 - Theoretical less wear
 - More modular
 - More expensive
 - Can dissociate
 - **NO PROVEN ADVANTAGE**
Arthroplasty Issues: Cement?

• **Cement (PMMA)**
 - Improved mobility, function, walking aids
 - Most studies show no difference in morbidity / mortality
 • Sudden Intra-op cardiac death risk slightly increased:
 - 1% cemented hemi for fx vs. 0.015% for elective arthroplasty

• **Non-cemented (Press-fit)**
 - Pain / Loosening higher
 - Intra-op or periop fracture risk higher
 • Particularly in men > 80 years
Arthroplasty Issues: Surgical Approach

• Posterior
 – 60% higher short-term mortality
 – Higher dislocation rate

• Anterior/Anterolateral
 – Fewer dislocations
ORIF or Replacement?

- Prospective, randomized study ORIF vs. cemented bipolar hemi vs. THA
- Ambulatory patients > 60 years of age
 - 37% fixation failure (AVN/nonunion)
 - Similar dislocation rate hemi vs. THA (3%)
 - ORIF 8X more likely to require revision surgery than hemi and 5X more likely than THA
- THA group best functional outcome
GERIATRIC FNF Summary

• MRI to rule out occult fracture in older patients unable to weight bear
• CRPP for valgus impacted or nondisplaced fractures
• Arthroplasty if displaced
• Consider THA for active older patients
Special Problems: Stress Fractures

- Patient population:
 - Females 4–10 times more common
 - Amenorrhea / eating disorders common
 - Femoral BMD average 10% less than control subjects
 - Hormone deficiency
 - Recent increase in athletic activity
 - Frequency, intensity, or duration
 - Distance runners most common
Stress Fractures

• Clinical Presentation
 – Activity / weight bearing related
 – Anterior groin pain
 – Limited ROM at extremes
 – ± Antalgic gait
 – Must evaluate back, knee, contralateral hip
Stress Fractures

- **Imaging**
 - Plain Radiographs
 - Negative in up to 66%
 - Bone Scan
 - Sensitivity 93-100%
 - Specificity 76-95%
 - MRI
 - 100% sensitivity / specificity
 - Also Differentiates: synovitis, tendon/muscle injuries, neoplasm, AVN, transient osteoporosis of hip
Stress Fractures

• Classification
 – Compression sided
 • Callus / fracture at inferior aspect femoral neck
 – Tension sided
 • Callus / fracture at superior aspect femoral neck
 – Displaced

26 y.o. woman runner
Stress Fractures: Treatment

• Compression sided
 • Fracture line extends < 50% across neck
 – “stable”
 – Tx: Activity / weight bearing modification
 • Fracture line extends >50% across neck
 – Potentially unstable with risk for displacement
 – Tx: Emergent ORIF

• Tension sided - Nondisplaced
 • Unstable
 – Tx: Expedited ORIF
 » Protect weight bearing
 » Schedule for fixation asap

• Displaced
 – Tx: Urgent ORIF
 – Fix within 24 hours
Stress Fractures: Complications

- Tension sided and Compression sided fx’s (>50%) treated non-operatively
 - Varus malunion
- Displacement
 - 30-60% complication rate
 - AVN 42%
 - Delayed union 9%
 - Nonunion 9%
Special Problems: Nonunion

- 0-5% in Non-displaced fractures
- 9-35% in Displaced fractures
- Increased incidence with
 - Posterior comminution
 - Initial displacement
 - Imperfect reduction
 - Non-compressive fixation
Nonunion

- Clinical presentation
 - Groin or buttock pain
 - Activity / weight bearing related
 - Symptoms
 - more severe / occur earlier than AVN

- Imaging
 - Radiographs: lucent zones
 - CT: lack of healing
 - Bone Scan: high uptake
 - MRI: assess femoral head viability
Nonunion: Treatment

• Elderly patients
 – Arthroplasty
 • Results typically not as good as primary elective arthroplasty
 – Girdlestone Resection Arthroplasty
 • Limited indications
 • deep infection?
Nonunion: Treatment

- Young patients
 - Valgus intertrochanteric osteotomy (Pauwels)
Nonunion: Treatment

- Young patients
 - Valgus intertrochanteric osteotomy (Pauwels)
 - Creates compressive forces
Special Problems: Osteonecrosis (AVN)

- 5-8% Non-displaced fractures
- 20-45% Displaced fractures
- Increased incidence with:
 - INADEQUATE REDUCTION
 - Delayed reduction
 - Initial displacement
 - Associated hip dislocation
 - Sliding hip screw / plate devices
Osteonecrosis (AVN)

- Clinical presentation
 - Groin / buttock / proximal thigh pain
 - May not limit function
 - Onset usually later than nonunion

- Imaging
 - Plain radiographs: segmental collapse / arthritis
 - Bone Scan: “cold” spots
 - MRI: diagnostic
Osteonecrosis (AVN)

• Treatment
 – Elderly patients
 » Only 30-37% patients require reoperation
 • Arthroplasty
 – Results not as good as primary elective arthroplasty
 • Girdlestone Resection Arthroplasty
 – Limited indications
Osteonecrosis (AVN)

• Treatment
 – Young Patients
 » NO good option exists
 • Proximal Femoral Osteotomy
 – Less than 50% head collapse
 • Arthroplasty
 – Significant early failure
 • Arthrodesis
 – Significant functional limitations

** Prevention is the Key **
Complications

• Failure of Fixation
 – Inadequate / unstable reduction
 – Poor bone quality
 – Poor choice of implant

• Treatment
 – Elderly: Arthroplasty
 – Young: Repeat ORIF
 Valgus-producing osteotomy
 Arthroplasty
Complications

• Fracture Distal to Fixation
 – 20% screws at or below Lesser Trochanter
 – Poor bone quality esp. with anterior start site
 – Poor angle of screw fixation
 – Multiple passes of drill or guide pin

• Treatment
 – Elderly & Young: Repeat ORIF of neck?
 Refixation of neck and subtrochanteric fx
 Remove posterior screws & bypass with IMN
Femoral Neck Fx, Garden I
CR, Perc Screw Fixation
Watch Screws Below LT Level
(20% Fx Rate)
At 3 wks:
In NH ➔ Fall
Spiral ST Femur
Below FN Fx
Maintain FN Screws
Good Alignment & Start
Ream & Insert Behind FN Screws
@ 3 Months
Healed FN & ST Fx
Ambulating without Aide
Complications

• Post-traumatic arthrosis
 • Joint penetration with hardware
 • AVN related

• Blood Transfusions
 – THR > Hemi > ORIF
 – Increased rate of post-op infection

• DVT / PE
 – Multiple prophylactic regimens exist
 – Low dose subcutaneous heparin not effective
Complications

• One-year mortality 14-50%

• Increased risk:
 – Medical comorbidities
 – Surgical delay > 3 days
 – Institutionalized / demented patient
 – Arthroplasty (short term / 3 months)
 – Posterior approach to hip
Summary

• Different injury in young and old
• Important injury in both young and old
• Understand goals of treatment
• Maximize outcome with least iatrogenic risk