Growth Plate Injuries

Jennifer Beck, MD
Pediatric Sports Medicine
Orthopedic Institute for Children,
UCLA Dept of Orthopedic Surgery
Spring 2016
Adapted from work by
Joshua Klatt, MD and Steven I. Rabin, MD
Outline

• Osseous Anatomy and Biology
• Analyzing Growth Remaining
• Fracture Classification
• Imaging Studies
• Operative Indications
• Potential Complications
• Treatment of Complications
Basic Osseous Anatomy

- **Epiphysis**
 - Secondary Ossification Center
 - The epiphysis is the bone located between the articular surface and the physis

- **Epiphyseal Plate = Growth Plate = Physis**

- **Metaphysis**
 - Bone adjacent to the physis on the opposite side of the epiphysis.

- **Diaphysis**
 - The shaft of the bone
Growth Plate Histology

- **Zones of the Physis**
 - **Germinal Zone**
 - Minimally active, scattered chondrocytes
 - **Proliferative Zone**
 - Columns of chondrocytes actively dividing
 - **Hypertrophic Zone**
 - Chondrocytes accumulate and release calcium
 - Weakest zone of physis
 - Zone of endochondral ossification
Other Important Growth Factors

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Growth (mm/yr)</th>
<th>Percentage of bone Longitudinal Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal Humerus</td>
<td>7mm</td>
<td>80%</td>
</tr>
<tr>
<td>Distal Humerus</td>
<td>2mm</td>
<td>20%</td>
</tr>
<tr>
<td>Proximal Radius</td>
<td>1.75mm</td>
<td>25%</td>
</tr>
<tr>
<td>Distal Radius</td>
<td>5.25mm</td>
<td>75%</td>
</tr>
<tr>
<td>Proximal Ulna</td>
<td>5.5mm</td>
<td>80%</td>
</tr>
<tr>
<td>Distal Ulna</td>
<td>1.5mm</td>
<td>20%</td>
</tr>
<tr>
<td>Proximal Femur</td>
<td>3.5mm</td>
<td>30%</td>
</tr>
<tr>
<td>Distal Femur</td>
<td>9mm</td>
<td>70%</td>
</tr>
<tr>
<td>Proximal Tibia</td>
<td>6mm</td>
<td>60%</td>
</tr>
<tr>
<td>Distal Tibia</td>
<td>3-5mm</td>
<td>40%</td>
</tr>
</tbody>
</table>
Epidemiology

- 18% to 30% of children’s fractures involve the physis
- Male-to-female ratio is about 2:1
- Most common site is phalanges of the fingers (approximately 40%)
 - Distal radius (18%)
 - Distal Tibia (11%)
 - Distal Fibula (7%)
Mechanism of Injury

More Common:
- Direct Trauma
- Infection
- Overuse
- Tumor
- Iatrogenic Injury
- Metabolic abnormality

Less Common:
- Vascular Injury
- Radiation
- Frostbite
- Burns
- Electrical Injury
Fracture Classification

- Salter-Harris most commonly used
- Multiple historical classification systems
 - Poland
 - Bergenfeldt
 - Aitken
 - Peterson
Salter-Harris Classification
Salter-Harris General Frequency

13% 54% 11% 6% 16%
Imaging

• Plain radiographs
• Concerning radiographs or history:
 – Comparison x-rays
 – CT Scan
 – MRI
Importance of Prior X-ray Views

- Child with knee pain
- Difficult to see fracture displacement

Courtesy of Dr Klatt
Oblique Xray

- Shows significantly displaced fracture

Courtesy of Dr Klatt
Advanced Imaging

• Fracture displacement difficult to assess and measure

Courtesy of Dr Klatt
Advanced Imaging

- CT scan shows a Salter Harris III fracture of the distal tibia
- Displacement can be measured easily

Courtesy of Dr. Klatt
Principles of Treatment

- Fracture healing with maintenance of growth potential
- Acceptable reduction and alignment
- Limit iatrogenic injury to physis
 - Repeated, forceful reduction attempts
 - Hardware across physis
- Maintenance of reduction/alignment
Salter-Harris 1

- Physis only injured
- Fracture through zone of hypertrophy
Salter-Harris 1

• Subtle, non-displaced SH1
 – Exam with tenderness, swelling at physis
 – Normal radiographs
 – Casting/immobilization

• Severe, displaced SH1
 – Exam with obvious deformity and pain
 – Displacement seen on radiographs
 – Closed reduction and casting favored
 • Reduces risk of iatrogenic physeal injury
Salter-Harris 2

- Physis + metaphysis
- Thurston-Holland metaphyseal fragment
- Zones of endochondral ossification and hypertrophy fractured
Salter-Harris 2

Treatment options include:
- Closed reduction and casting
- Closed reduction and percutaneous screw or wire fixation
 - Screw for larger metaphyseal fragment
 - Wires crossing physis for smaller metaphyseal fragment
Salter-Harris 3

- Physis + Epiphysis Injured
- Hypertrophic, proliferative, and germinal zones fractured
- Advanced imaging may be needed to evaluate articular displacement
Salter-Harris 3

- Treatment options include:
 - Closed reduction and casting
 - Closed vs open reduction, screw fixation
 - Screw along width of epiphysis avoiding physis
 - Screws in epiphysis may increase pressure on adjacent articular cartilage and are often removed quickly after fracture healing

Courtesy of Dr Klatt
Salter-Harris 4

- Epiphysis, physis, metaphysis injured
- All four zones of physis involved
- Anatomic reduction of physis required to minimize risk of physeal bar
Salter-Harris IV: Triplane Fracture

• Triplane Ankle Fx
 – Usually near end of growth as asymmetric closure of distal tibia physis occurs
 – Anterior epiphyseal fracture with large posterior medial fragment
 • Combination SH2 and SH3
Salter-Harris IV: Triplane Fracture

- CT gives 3D visualization of fracture patterns
- Essential for surgical planning
Salter-Harris IV Triplane Fracture

- Fixation best accomplished from epiphysis to epiphysis and/or metaphysis to metaphysis
- As with SH3, epiphyseal hardware should be removed to decrease pressure on adjacent articular cartilage
Salter-Harris 5

- Crush injury to entire physis
- Very difficult initial diagnosis as minimal displacement
- Initial nonoperative treatment
- Late diagnosis after complication of physeal arrest and deformity has occurred
Growth Plate Injuries

• When an entire physis arrests (SH1,2,5)
 – Longitudinal bone growth ceases completely at that physis

• When only part of physis arrests (SH 3,4)
 – Angular deformity associated with shortening
 – Often a much more difficult problem to address
What to look for?

• Loss of abnormal physeal contour
• Sharply defined connection between epiphysis and metaphysis
• Tapering of harris growth arrest line towards area of growth arrest
• Obvious angular deformity or segment shortening
Prognosis and Treatment

- Prognosis and treatment depends on these factors
 - Severity of injury
 - Displacement, comminution, open vs. closed
 - Radiographic type of fracture
 - Patient age, growth remaining
 - Which physis injured: linear vs undulating
 - Where physis injured: Central vs Peripheral
 - What percentage of physis is injured
- Advanced imaging (CT or MRI) often warranted
Treatment: Know Your Options

• Surgical Physeal Arrest Resection
 – Removal of arrest with continuation of physeal growth

• Complete Physis Arrest
 – Ablation of growth in physis on one or both sides
 • Hemi-epiphysiodesis (angular) vs epiphysiodesis (growth correction of affected and/or unaffected side)

• Treatment of angular or growth deformities
 – Guided growth
 – Osteotomies
 – Fixators
Treatment Considerations:

• Affected Leg:
 – Physis with remaining growth potential?
 • How much?
 – Longitudinal deformity
 • End LLD?
 – Angular deformity
 • Acceptable?
 • No: Hemi-epiphysiodesis vs osteotomy?

• Uaffected Leg:
 – Limb length discrepancy that may require treatment
 • Epiphysiodesis
Physeal Arrest Resection Considerations

- Etiology of arrest may affect outcome
- Central versus peripheral
- Extent of arrest
- Exposure and access to arrest
- Amount of growth remaining
Prognosis
Distal Femur Fractures

• Meta-analysis of 564 fx's
• Risk of arrest based on type
 – I – 36%
 – II – 58%
 – III – 49%
 – IV – 65%
• Based on displacement
 – Non-displaced – 31%
 – Displaced – 65%
• 22% developed length discrepancy > 1.5 cm

Prognosis
Distal Tibia Fractures

• Risk of arrest based on type
 – I – 3 to 5%
 – II – 17 to 36%
 – III – 13 to 50%
 – IV – 13 to 50%
 – Tillaux – low risk
 • Unique fracture occurring at time of physeal closure
 – Triplane – 7 to 21%
 • Unique fracture occurring at time of physeal closure
Prognosis
Distal Tibia Fractures

- Mechanism of injury likely very important
 - MVA – 86%
 - Sports – 8%
 - Falls – 6%

- Displacement
 - Increased risk of 15% with each additional mm of displacement

- Residual displacement*
 - Gap > 3 mm associated with 60% risk (vs 17%)

- Attempts at reduction (not signif.)
 - 1 attempt – 11%
 - 2 attempts – 24%
 - 3 attempts – 50%

Summary

- Osseous Anatomy and Biology
- Analyzing Growth Remaining
- Fracture Classification
- Imaging Studies
- Operative Indications
- Potential Complications and Treatment
Thank You

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org.
For questions or comments, please send to ota@ota.org