Growth Plate Injuries

Jennifer Beck, MD Pediatric Sports Medicine Orthopedic Institute for Children, UCLA Dept of Orthopedic Surgery Spring 2016 Adapted from work by Joshua Klatt, MD and Steven I. Rabin, MD

Outline

- Osseous Anatomy and Biology
- Analyzing Growth Remaining
- Fracture Classification
- Imaging Studies
- Operative Indications
- Potential Complications
- Treatment of Complications

Basic Osseous Anatomy

• Epiphysis

- Secondary Ossification Center
- The epiphysis is the bone located between the articular surface and the physis
- Epiphyseal Plate = Growth Plate = Physis
- Metaphysis
 - Bone adjacent to the physis on the opposite side of the epiphysis.
- Diaphysis
 - The shaft of the bone

OTA Compendium

Growth Plate Histology

• Zones of the Physis

- Germinal Zone
 - Minimally active, scattered chondrocytes
- Proliferative Zone
 - Columns of chondrocytes actively dividing
- Hypertrophic Zone
 - Chondrocytes accumulate and release calcium
 - Weakest zone of physis
- Zone of endochondral ossification

Other Important Growth Factors

Location	Average Growth (mm/yr)	Percentage of bone Longitudinal Growth
Proximal Humerus	7mm	80%
Distal Humerus	2mm	20%
Proximal Radius	1.75mm	25%
Distal Radius	5.25mm	75%
Proximal Ulna	5.5mm	80%
Distal Ulna	1.5mm	20%
Proximal Femur	3.5mm	30%
Distal Femur	9mm	70%
Proximal Tibia	бmm	60%
Distal Tibia	3-5mm	40%

Epidemiology

- 18% to 30% of children's fractures involve the physis
- Male-to-female ratio is about 2:1
- Most common site is phalanges of the fingers (~40%)
 - Distal radius (18%)
 - Distal Tibia (11%)
 - Distal Fibula (7%)

Mechanism of Injury

More Common:

- Direct Trauma
- Infection
- Overuse
- Tumor
- Iatrogenic Injury
- Metabolic abnormality

Less Common:

- Vascular Injury
- Radiation
- Frostbite
- Burns
- Electrical Injury

Fracture Classification

- Salter-Harris most commonly used
- Multiple historical classification systems
 - Poland
 - Bergenfeldt
 - Aitken
 - Peterson

Salter-Harris Classification

Salter-Harris General Frequency

Imaging

- Plain radiographs
- Concerning radiographs or history:
 - Comparison xrays
 - CT Scan
 - MRI

Importance of Prior Xray Views

- Child with knee pain
- Difficult to see fracture displacement

Oblique Xray

• Shows significantly displaced fracture

Advanced Imaging

• Fracture displacement difficult to assess and measure

Advanced Imaging

- CT scan shows a Salter Harris III fracture of the distal tibia
- Displacement can be measured easily

Principles of Treatment

- Fracture healing with maintenance of growth potential
- Acceptable reduction and alignment
- Limit iatrogenic injury to physis

 Repeated, forceful reduction attempts
 Hardware across physis
- Maintenance of reduction/alignment

- Physis only injured
- Fracture through zone of hypertrophy

- Subtle, non-displaced SH1
 - Exam with tenderness, swelling at physis
 - Normal radiographs
 - Casting/immobilization

- Severe, displaced SH1
 - Exam with obvious deformity and pain
 - Displacement seen on radiographs
 - Closed reduction and casting favored
 - Reduces risk of iatrogenic physeal injury

- Physis +metaphysis
- Thurston-Holland metaphyseal fragment
- Zones of endochondral ossification and hypertrophy fractured

Treatment options include:

- Closed reduction and casting
- Closed reduction and percutaneous screw or wire fixation
 - Screw for larger metaphyseal fragment
 - Wires crossing physis for smaller metaphyseal fragment

- Physis+Epiphysis Injured
- Hypertrophic, proliferative, and germinal zones fractured
- Advanced imaging may be needed to evaluate articular displacement

• Treatment options include:

- Closed reduction and casting
- Closed vs open reduction, screw fixation
 - Screw along width of epiphysis avoiding physis
 - Screws in epiphysis may increase pressure on adjacent articular cartilage and are often removed quickly after fracture healing

- Epiphysis, physis, metaphysis injured
- All four zones of physis involved
- Anatomic reduction of physis required to minimize risk of physeal bar

Salter-Harris IV: Triplane Fracture

• Triplane Ankle Fx

- Usually near end of growth as asymmetric closure of distal tibia physis occurs
- Anterior epiphyseal fracture with large posterior medial fragment
 - Combination SH2 and SH3

Salter-Harris IV: Triplane Fracture

- CT gives 3D visualization of fracture patterns
- Essential for surgical planning

Salter-Harris IV Triplane Fracture

- Fixation best accomplished from epiphysis to epiphysis and/or metaphysis to metaphysis
- As with SH3, epiphyseal hardware should be removed to decrease pressure on adjacent articular cartilage

- Crush injury to entire physis
- Very difficult initial diagnosis as minimal displacement
- Initial nonoperative treatment
- Late diagnosis after complication of physeal arrest and deformity has occured

Growth Plate Injuries

- When an entire physis arrests (SH1,2,5)
 - Longitudinal bone growth ceases completely at that physis
- When only part of physis arrests (SH 3,4)
 - Angular deformity associated with shortening
 - Often a much more difficult problem to address

What to look for?

- Loss of abnormal physeal contour
- Sharply defined connection betweeen epiphysis and metaphysis
- Tapering of harris growth arrest line towards area of growth arrest
- Obvious angular deformity or segment shortening

Prognosis and Treatment

- Prognosis and treatment depends on these factors
 - Severity of injury
 - Displacement, comminution, open vs. closed
 - Radiographic type of fracture
 - Patient age, growth remaining
 - Which physis injured: linear vs undulating
 - Where physis injured: Central vs Peripheral
 - What percentage of physis is injured
- Advanced imaging (CT or MRI) often warranted

Treatment: Know Your Options

- Surgical Physeal Arrest Resection
 - Removal of arrest with continuation of physeal growth
- Complete Physis Arrest
 - Ablation of growth in physis on one or both sides
 - Hemi-ephiphysiodesis (angular) vs epiphysiodesis (growth correction of affected and/or unaffected side)
- Treatment of angular or growth deformities
 - Guided growth
 - Osteotomies
 - Fixators

Treatment Considerations:

- Affected Leg:
 - Physis with remaining growth potential?
 - How much?
 - Longitudinal deformity
 - End LLD?
 - Angular deformity
 - Acceptable?
 - No: Hemiepiphysiodesis vs osteotomy?

- Uaffected Leg:
 - Limb length discrepany that may require treatment
 - Epiphysiodesis

Physeal Arrest Resection Considerations

- Etiology of arrest may affect outcome
- Central versus peripheral
- Extent of arrest
- Exposure and access to arrest
- Amount of growth remaining

Prognosis Distal Femur Fractures

- Meta-analysis of 564 fxs
- Risk of arrest based on type
 - I 36%
 - II 58%
 - III 49%
 - -~IV-65%
- Based on displacement
 - Non-displaced 31%
 - Displaced 65%
- 22% developed length discrepancy > 1.5 cm

Arkader et al. Predicting the outcome of physeal fractures of the distal femur. *J Pediatr Orthop*. 2007;27:703. Basener et al. Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis. *J Orthop Trauma*. 2009;23:663.

Prognosis Distal Tibia Fractures

- Risk of arrest based on type
 - I 3 to 5%
 - − II − 17 to 36%
 - − III − 13 to 50%
 - − IV − 13 to 50%
 - Tillaux low risk
 - Unique fracture occurring at time of physeal closure
 - Triplane 7 to 21%
 - Unique fracture occuring at time of physeal closure

Leary et al. Physeal fractures of the distal tibia: predictive factors of premature physeal closure and growth arrest. *J Pediatr Orthop*. 2009;29:356.

Prognosis Distal Tibia Fractures

- Mechanism of injury likely very important
 - MVA 86%
 - Sports 8%
 - Falls 6%
- Displacement
 - Increased risk of 15% with each additional mm of displacement

- Residual displacement*
 - Gap > 3 mm associated with 60% risk (vs 17%)
- Attempts at reduction (not signif.)
 - 1 attempt 11%
 - 2 attempts 24%
 - 3 attempts 50%

Leary et al. Physeal fractures of the distal tibia: predictive factors of premature physeal closure and growth arrest. *J Pediatr Orthop*. 2009;29:356. *Barmada et al. Premature physeal closure following distal tibia physeal fractures: a new radiographic predictor. *J Pediatr Orthop*. 2003;23:733.

Summary

- Osseous Anatomy and Biology
- Analyzing Growth Remaining
- Fracture Classification
- Imaging Studies
- Operative Indications
- Potential Complications and Treatment

Thank You

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to <u>ota@ota.org</u>

Return to Pediatrics Index

For questions or comments, please send to ota@ota.org