Important Pediatric Differences

• Not just “little adults”
• Anatomic / Radiographic differences/variants
• Flexible
• Large heads relative to body
• Physeal/synchondrosis/periosteal tube fractures - apparent dislocations
• Surgery rarely indicated
• Immobilization well tolerated
Epidemiology

- Incidence
 - 108 per million
- 3M:2F
- >15 yr highest risk
- Etiology:
 - MVC
 - Falls
 - Sports
 - Non-accidental Trauma

Epidemiology

- Injury Distribution

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Cervical Spine (%)</th>
<th>Thoracic Spine (%)</th>
<th>Lumbar Spine (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4 yrs</td>
<td>52%</td>
<td>27%</td>
<td>21%</td>
</tr>
<tr>
<td>5-9 yrs</td>
<td>42%</td>
<td>24%</td>
<td>34%</td>
</tr>
<tr>
<td>10-14 yrs</td>
<td>43%</td>
<td>29%</td>
<td>28%</td>
</tr>
<tr>
<td>15-20 yrs</td>
<td>41%</td>
<td>26%</td>
<td>33%</td>
</tr>
</tbody>
</table>

- Overall Neurologic Injury 15%

> 50% cervical origin

Epidemiology

- Patterns vary
 - Age (Adolescents predominate)
 - Race
 - Ie. African American – 24% firearm, caucasian – 1% firearm
 - Economic Status

- Young children <9yo
 - Ligamentous injury > Bony Injury
 - SCIWORA

Cervical Spine Injuries

- **Rare** - < 1% of children’s fractures
- **Neurologic Injury** – “rare” to 44%

 Mortality in ≤ 9 yrs

- **Age ≤ 7 yrs**
 - Majority **upper cervical**, esp. craniocervical junction
 - Larger Head:Torso ratio

- **Age > 7 yrs**
 - **Lower cervical** injuries predominate

Cervical Spine Injuries

- Upper cervical anatomy
 - Occiput-C1 articulation horizontally based
 - Child: large head/body ratio
 - Prone to occiput-C1 injury
Anatomy – C1

- **Birth**: 3 ossification centers
 - Body & 2x neurocentral arches

- **7 yrs**: Neurocentral synchondroses fuse

Anatomy – C2

- **Birth**: 4 ossification centers
 - Body, 2x neural arches, dens
- **3-6 yr** – Fusion of:
 - Neurocentral synchondroses
 - Dentocentral synchondrosis

Significance: NO synchondrosis or physis should be visible on open mouth odontoid XR after 6 years of age
Anatomy – C2

• Summit ossification center
 – Appears at 3 – 6 yrs
 – Fuses ~ 12yrs

Do not confuse with os odontoideum.

Creates confusion with studies

Anatomy – C2
Os Odontoideum

- Origin hypotheses:
 - Congenital
 - Traumatic (favored)
- Potential C1-C2 instability
- Usually asymptomatic
- Debate about participation in contact sports

Arvin et al. Os Odontoideum: Etiology & surg Management, Neurosurgery, 2009
Subaxial Cervical Anatomy
C3 – C7

- **3-6 yrs**: Neurocentral synchondroses fuse
- Vertebral bodies *wedge shaped* until **7yo** → bodies square out
- Superior and inferior cartilage endplates firmly attached to disc
Mechanism of Injury

• Young child C-spine susceptible to injury:
 – *Very mobile* – ligamentous laxity & shallow angle of facet joints
 – Relatively larger head
 – Delayed ossification of uncinate processes
 – Anterior vertebral body wedging
 – Underdeveloped para-spinal muscles

• Combination leads to upper cervical injuries

• Most Common Etiologies: MVC & Falls
C-Spine Fracture Pattern

• Junction b/w cartilage endplate and bony vertebral body
• Fractures *split the endplate* b/w columnar growth cartilage and calcified cartilage
• Does *not* typically occur by fracture through the endplate – disc junction

Transport & the Pediatric C Spine

- **Large head!**
 - Standard backboard → increased flexion of C spine

- Remedy:
 - Pediatric backboard w/ cut-out for head (A)
 - Elevate trunk relative to head (w blankets) (B)

C Spine Evaluation in Children

- Mechanism extremely important
- High incidence associated systemic injury
 - 50% other injuries, 20% neuro injury
- Physical exam – tenderness (age, distracting injuries), neurological exam
 - Unexplained hypotension = SCI
- Xrays not commonly used
- CT scan to define bony detail
- Low threshold to obtain MRI w/ stir

ED C Spine Evaluation

PR – Powers Ratio. ADI – Atlanto-dens interval. & Others (see reference)

Swichuk’s Line

Spinolaminar line drawn from C1 to C3
Distinguishes normal variant from Hangman’s fracture
C Spine XR Evaluation in Children

- Be aware of normal ossification centers and physes

- C2/3 pseudosubluxation common in children < 8yrs (Check spinolaminar line of Swischuk)

- Evaluation of anterior soft tissues unreliable in crying child

- In uninjured normal patients <8yrs, 20% can demonstrate ADI 3-5mm (Adult ADI normal ≤ 3mm)

Normal Radiographic Findings

- Ossiculum terminale
- C1 override C2 (20%)
- Multiple secondary ossification centers
- Normal synchondrosis
- Odontoid angulation (4%)
- Basilar subdental synchondrosis (>7ys)
- Pseudosubluxation (<9yrs)
- $ADI < 5\text{mm}$ (why? ↑ ligamentous laxity & cartilage components in kids)
- RSTS
- Normal anterior body wedging <7yrs
- Horizontal facets as pillar fxs
- Single-level kyphosis (16%)
C2-3 Pseudosubluxation

• Anatomic variant - C2 pseudosubluxing on C3 (occasionally C3 on 4)
 – Swichuk intact

• Differentiate from true injury (which is uncommon):
 – Presence of prevertebral soft tissue swelling
 – **Break** in the spinolaminar line of Swischuk

Traumatic Spinal Cord Injury

- Rare in children
- Better prognosis for recovery than adults
- Treat aggressively with immobilization +/- decompression
- Late sequelae = paralytic scoliosis (affects almost all quadriplegic children if injured when < 10 yrs old)

SCIWORA
Spinal Cord Injury W/o Radiographic Abnormality

- Distraction Mechanism - Spinal column more flexible than Spinal Cord
- Cord traction injury w/ normal XRs
- Usually upper C spine and <8yrs
- MRI – diagnose cord injury & eval posterior soft tissues
- SCIWORA & dislocations ↓ w/ age
 - 16.99% toddlers (w C spine injuries)
 - 5.04% young adults (w C spine injuries)

High Suspicion - GCS 3 w/ normal CT head →
may be upper cervical spinal cord injury!

SCIWORA

- $\text{Stretch}_{\text{skeleton}} > \text{Stretch}_{\text{cord}}$

- Stretch Capacity
 - Spinal Column 2” > Spinal Cord $\frac{1}{4}”$

- Cord restricted by horizontal cervical roots, foramen magnum

Leventhal, JPedsOrthop 1960
C-Spine Clearance & Evaluation

- 3 view plain film series still used
- Low threshold for further imaging
- CT scan upper C-spine (O-C2)
- Consider MRI if intubated or obtunded

C-Spine Clearance & Evaluation
Not “Cleared” by Plain Radiographs

• CT scan
 – **Advantages** – Fast, No sedation or anesthesia
 – **Disadvantages** – radiation, Limited evaluation soft tissues & cartilage

• Assess alignment & bony injury

Not “Cleared”

- MRI scan – currently favored
- Rapid sequence/image acquisition algorithms – gradient echo
- Evaluate non osseous tissues and spinal cord
- MRI scan should be considered in critically injured child for whom adequate plain films cannot be obtained to rule out spinal injury

If not “Cleared” within 12 Hours

- Switch to pediatric Aspen or Miami J collar
- Consider CT or MRI

Child in C-spine collar

Meets NEXUS criteria:
1. Absence of midline cervical tenderness
2. No evidence of intoxication
3. Normal level of alertness
4. Normal neurological exam
5. Absence of a painful, distracting injury

Trauma evaluation and Cervical spine radiographs:
AP/lateral/odontoid for age > 5 yr
AP/lateral only for age ≤ 5 yr

C-SPINE CLEAR

Communicative child ≥ 3 years

YES

Meets NEXUS criteria:
1. Absence of midline cervical tenderness
2. No evidence of intoxication
3. Normal level of alertness
4. Normal neurological exam
5. Absence of a painful, distracting injury

NO

Normal neurological exam

YES

NO

Abnormal neurological exam

Spine Service Consult

Spine Service Consult

Spine Service Consult

ABNORMAL

ABNORMAL

Flexion/Extension C-spine x-rays

ABNORMAL

C-SPINE CLEAR

NO

Normal neurological exam

YES

NO

Leave in collar; refer to neurosurgery clinic in 1-2 weeks

If You See a Spine Fracture in a Child

• Look hard for another one

“The most commonly missed spinal fracture is the second one”. -J. Dormans

• High incidence of noncontiguous spine fractures in children
Thoracic Spine Fractures

• Less common spinal fracture in children than in more mobile regions
• Rib cage offers some support / protection
• Motor vehicle crashes, falls from heights
• Child abuse in very young
• Compression fractures in severely osteopenic conditions (OI, chemotherapy)
• Multiple contiguous – hyperflexion neck/chest injury (motorcross)
• 11M, motorcross, flew over handlebars
Thoracic Spine Fracture Dislocations

- High energy mechanisms
- Often spinal cord injury, can be transected
- Prognosis for recovery most dependent on initial exam – complete deficits unlikely to have recovery
- Infarction of cord (artery of Adamkiewicz) may play some role – especially in delayed paraplegia

Thoracolumbar Junction Injuries
T11-L2

- Classically lap-belt flexion-distraction injuries
- Chance fractures and variants
- High association with intraabdominal injury (50-90%)
- Neurologic injury infrequent but can occur

Chance Fractures and Variants

- Flexion over fulcrum
- Posterior elements fail in tension, anterior elements in compression
 - Can occur through bone, soft tissue or combination
- Treatment
 - Pure bony injuries can be treated with immobilization in extension
 - Partial or whole ligamentous injuries may be best treated with surgical stabilization

Seatbelt/Flexion-Distraction Injury Classification

A B

C D

Bony Flexion Distraction Injury
Ligamentous Flex/Dist Injury 1

- 5yF, MVC, bowel perforations

Tx:
L 2-3 open short-segment fixation/fusion
Ligamentous Flex/Dist Injury 2

12yM, MVC, initial *missed injury*

Upright lateral + Flexion/Extension XR

Tx: L3-4 *Percutaneous fusionless fixation* w/ removal @ 6mo

30 months post op
Combined (Bony+Ligamentous) Flexion Distraction Injury

16yM, MVC, bowel injury

Tx: Closed reduction, perc fixation

Postop

3 yrs postop
Healed
Broken
screws (disc motion)
- removed
Lap Belt Sign

- High association with intraabdominal injury and lumbar spine fracture

- Lumbar spine films mandatory

Lumbar Spine Fractures
L3-L5

- Infrequent until late adolescence
 - Can be associated with lap belt injuries
- Usually compression fractures that are stable injuries
- Burst fractures
 - May progress to kyphosis
- Lumbar apophyseal injuries
 - Posterior displacement can cause stenosis, may need surgical excision

Lumbar Apophyseal Injuries
Slipped Apophysis

• Compression-shear injuries
• Same age group as SCFE
• Typically adolescent males, inferior endplates of L4 or L5
• Traumatic displacement of vertebral ring apophysis and disc into spinal canal
• If causes significant compression of cauda equina, treatment is surgical excision

Burst Fractures

- Usually in older adolescents
- Treatment similar to adults
- May not need surgery in neurologically intact patient
- Injuries at thoracolumbar junction higher risk for progressive kyphosis

Bibliography

Special Thanks - Additional Cases and imaging from:
- Dr. John C France (West Virginia University, Ruby Memorial)
- Dr. Aki S Puryear (St Louis University, Cardinal Glennon Children’s Hospital)

Arvin et al. Os Odontoideum: Etiology & surg Management, Neurosurgery, 2009

Firth GB, Kingwell S, Moroz P. Pediatric Non-Contiguous Spinal Injuries: The 15 year Experience at One Pediatric Trauma Centre. Spine. 2011 Nov. 14 (Ahead of Print)

Herzenberg et al. Emergency Transport and positioning of young children who have an injury of the cervical spine, JBJS. 1989;71:!5-22

Leventhal, JPedsOrthop 1960
Bibliography

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org
• For questions or comments, please send to ota@ota.org