Pediatric Hip Fractures and Dislocations

Alfred A. Mansour, MD Milton L. (Chip) Routt, Jr., MD Shiraz Younas, MD Updated February 2016

Objectives

- Review relevant pediatric proximal femoral development and anatomy
- Review the types of pediatric hip fractures
- Discuss complications and treatment options for pediatric hip fractures
- Discuss pediatric hip dislocations and treatment options

Pediatric Hip Fractures

• Less than 1% of all pediatric fractures

• 80-90% are a result of high energy trauma

• 10% due to moderate trauma or pathologic lesions

Canale JBJS 1977

Pediatric Proximal Femur: Development

- Single physis at birth
- Develops two separate centers of ossification
- Ossific nucleus of femoral head forms between 4-6 months
- Ossific nucleus of greater trochanter forms at about 4 years of age

T1 Coronal MRI Left Hip: 7-month old

Red – cartilaginous physis Blue – metaphysis Yellow – ossific nucleus

Pediatric Femur: Development

- Femoral neck shaft angle
 - 135 degrees at birth
 - 145 degrees by 1-3 years of age
 - Gradually matures to 130 degrees at skeletal maturity
- Femoral anteversion
 - 30 degrees at birth
 - Matures to about 10 degrees at skeletal maturity

Implications of Injuries Across the Proximal Femoral Physis

- Abnormal neck shaft angle
- Abnormal femoral neck version
- Decreased articulotrochanteric distance
- Mild limb length discrepancy

Pediatric Hip: Anatomy ateral Epiphyseal branch

- Lateral Circumflex
 - Supplies the anterior portion of the femoral epiphysis and physis until 5-6 months of age
 - Contribution to femoral head blood supply diminishes by 3 years of age
- Medial Circumflex
 - Major blood supply to proximal femur
 - The entire blood supply to the proximal femoral epiphysis comes from the lateral epiphyseal branches of the medial circumflex by 3 years of age
- 20 % blood supply to femoral head by artery of ligamentum teres after 8 years of age

Femoral Artery

Medial Femoral Circumflex (coursing posteriorly around femoral neck)

Peciatric Hip Fractures

LEFT

2013

SUPIN

- 85-90% due to high energy
- 30% with associated major injuries
 Intraabdominal & intrapelvic
- Hip dislocations, pelvic fractures and femoral fractures
- <10% pathologic</p>
- Non-accidental trauma rare <12 months of age

Femoral Neck Fracture Delbet Classification

- Type I: Transphyseal
 - < 10% of hip fractures
 - Most in children less than 2 or between 5 and 10 years of age
 - Diagnosed late in newborns and infants
 - Can result from child abuse
 - Subtypes
 - Type IA no dislocation of the epiphysis from the acetabulum
 - Type IB associated dislocation of epiphysis

Delbet Classification

• Type I:

- Usually a result of severe trauma
- 50% associated with femoral head dislocation
- Associated injuries in over 60% of patients
- Pelvic fractures most common associated orthopaedic injury
- High rate of AVN

Ratliff JBJSBr1962

Delbet Type I

Delbet Classification

- Type II: Trans-cervical
 - Most common pediatric hip fracture (40-50%)
 - Result from severe trauma
 - 70-80% displaced at initial presentation
 - Initial displacement at time of injury best predictor of AVN
 - Higher complication rate than type III and IV
 - AVN reported up to 50% although thought to be less with more aggressive management

Delbet Type II

MEMORIAL HERMANIN TMC

mage# 2

Delbet Classification

• Type III: Cervicotrochanteric

- 25-30% of hip fractures
- 20-25% AVN rate
- AVN rate directly related to amount of displacement at time of injury

Delbet Type III

Delbet Classification

Type IV: peritrochanteric or intertrochanteric

 6-15% of pediatric hip fractures
 AVN in less than 10%
 Most favorable outcomes

Delbet Type IV

Femoral Neck Fractures Missed/Delayed Diagnosis

- Pain from hip fractures may obscure associated injuries.
- Concomitant injuries, especially head injuries can lead to delay in diagnosis (up to 20% of hip fractures)
- Often missed in newborns and infants
- Stress fractures may be ignored as hip/groin sprains

Femoral Neck Fracture Treatment: Delbet Type I

- 35% loss of reduction rate with cast immobilization alone
- Rigid internal fixation for acute presentation with cast immobilization
- Gentle reduction maneuvers: Flexion, slight abduction and internal rotation under fluoroscopy

Femoral Neck Fracture Treatment: Delbet Type I Fractures

- If femoral head is not in acetabulum, one attempt at closed reduction followed by open reduction
- Smooth pins in children less than 4, 4.0 mm cannulated screws in 4-7 year range, and larger cannulated screws in older children
- Pin/screw placement through lateral incision. Avoid threads across the physis.

Pediatric Hip Fractures: Treatment Type II fractures

- Stable internal fixation for all fractures
- Complications more common with closed treatment
- Gentle closed reduction attempted under fluoro
- Open reduction through anterior or anterolateral approach

Pediatric Hip Fractures: Treatment Type II fractures

- Threaded steinman pins in younger child, cannulated screws in older
- Keep fixation distal to physis if possible
- At least two screws in older patients
- Needle or open hip capsular decompression highly recommended
- One and a half hip spica cast until radiographic healing

Pediatric Hip Fractures: Treatment Type III fractures

- Abduction casting for nondisplaced fractures in children less than 6
- Internal fixation for all type III fractures in children greater than 6 years, displaced fractures in children less than 6
- Augment cannulated screws with casting
- Avoid physis

Pediatric Hip Fractures: Treatment Type IV fractures

- Cast immobilization for nondisplaced fractures in younger patients
- Internal fixation for all displaced fractures and nondisplaced fractures in children over 6
- More favorable outcomes

- AVN: (historic vs. recent)
 - Type I: 100% vs 38%
 - Type II: 50% vs 28%
 - Type III: 25% vs 18%
 - Type IV: 15% vs 5%
 - Results from disruption of femoral head blood supply and tamponade from hemarthrosis
 - Risk Factors
 - Type I/II fractures
 - older age
 - initial displacement
 - Factors in our control
 - Time to treatment
 - Capsular decompression
 - Quality of reduction

- Coxa Vara
 - 10-32% of cases
 - Causes
 - Malreduction
 - Delayed union or nonunion
 - Premature proximal femoral physeal closure with greater troch overgrowth
 - Casting alone (especially in older patients)
 - Less likely with rigid internal fixation

- Nonunion
 - 6.5-12.5%
 - Higher rates with casting alone
 - Poor reduction
 - Distraction at fracture site
 - Fracture orientation (higher Pauwel's angle)
 - Can result in coxa vara or AVN

- Premature Physeal Closure
 - 10-62%
 - AVN most common cause
 - Crossing the physis with hardware risk factor (62% vs. 12 %)

Literature update

- Panigrahi, Int Orthop 2015
 - Prospective study, 28 pts.
 - 71% presented within 48 hrs. and operated on same day
 - 14% AVN
 - Capsullotomy in all cases
 - releases the tamponade effect
 - Recommend capsular decompression to be performed in all cases (due to lower AVN rate than other reported series)

Literature update

- Spence JPO 2015
 - Level III, retrospective comparative
 - 70 pts
 - Multiple reduction and fixation methods
 - 29% osteonecrosis
 - Significant predictors fracture displacement, fracture location
 - Not predictive Patient age, type of fixation, mechanism of injury, capsular decompression, postoperative alignment, and performance of reduction

Literature update

- Riley *JOT* 2015 Evaluated time to reduction and association with AVN
 - Retrospective prognostic Level II
 - 44 cases
 - Results/Conclusions
 - 20% AVN
 - No child <11 yrs old developed AVN
 - Unable to show that early reduction (<12 hours) or capsular decompression decreased AVN (but underpowered)

Presentation

• 7 month old child presents with one day history of refusal to move left leg

Initial Films

Injury? Associated injury?

Delbet Type I

Associated left subacute distal femur SH2 fracture

Treatment options?

Closed Reduction and Casting

3 months

10 months

Follow-up stop 3 yrs postop

Initial Presentation

- 7 year old male involved in auto vs pedestrian accident
- Right hip pain with movement

Initial Films

Initial Films

Injury? Concerns the family should know about preoperatively?

Delbet type II

Treatment options?

ORIF

Fixed angle construct with supplemental antirotation screw Sparing the physis Options for Approach?

Approach Options for ORIF

- Watson-Jones (anterolateral)
 - Single incision
 - Easier fracture visualization for Delbet III than I or II
- Smith-Peterson (anterior)
 - Need separate lateral incision of hardware insertion
 - More direct visualization of fracture site (especially Delbet I and II)

10 month follow-up

10 monthe noston

After hardware removal. No AVN...yet.

Initial Presentation

- 3 yr old male involved in auto pedestrian accident
- Brought in with shortened externally rotated right lower extremity, blood at urethral meatus

Initial Films

Notice the proximal fragment is also dislocated...

Associated Injuries

Delbet type III

Treatment options?

ORIF

Spica Cast for Pelvic Injuries

3 month follow-up

Initial Presentation

- 8 year old rode his bike into a metal post
- Developed acute right hip pain

Initial Films

Initial Films

Delbet type IV

Treatment options? Approach?

Lateral approach – clamp application on greater trochanter and vastus ridge

One year follow-up

Case

- 12 yo Female
 - MVA 7pm
 - Father Driver Fatality
 - HD Stable
 - Left Hip Pain
 - Deformity
 - 11pm
 - Cleared for Ortho

What's the diagnosis?

- Femoral Neck Fracture
- Delbet 1A
- Delbet 2
- Cervico-trochanteric Fracture
- Other

What would you do?

- Spica Casting
- Urgent Closed Reduction Fix
- Urgent Open Reduction Fix
- Delayed Operative

Preop Immediate postop Healed, at skeletal ma Cervicotrochanteric – treated with urgent open reduction and internal fix

- Uncommon injury
- Force required to dislocate increases with age
 - Minor injury <10 yrs
 - Higher-energy injury
 >12 yrs
- Majority are posterior direction

(Vialle JPO 2005)

- Exam
 - Observe the position of limb
 - Posterior dislocations
 - hip flexion, adduction, and internal rotation
 - Anterior dislocations
 - hip extension, abduction, and external rotation.
 - Inferior dislocations
 - thigh is hyperflexed or abducted
 - Neurovascular examination
 - Pre and post reduction
- Xrays
 - Prior to reduction attempt

- Urgent Reduction
 - <6 hours to decrease AVN risk</p>
 - 20-fold increase in AVN with delay >6 hrs (Mehlman CORR 2000)
 - Gentle reduction
 - Risk iatrogenic epiphyseal separation
 - Open reduction if failed attempts at closed reduction

- Post-care
 - Younger patients (<3-4 yrs)
 - Spica cast 3-4 wks
 - Abduction splinting 3-4 wks
 - Compliant patients
 - protected non-weight bearing for 6 weeks

(Vialle JPO 2005)

Pitfalls

- Impediments to reduction
 - Osteocartilaginous fragments
 - Interposed labrum
 - Femoral head buttonhole through capsule
 - Torn ligamentum teres

Complications

• Complications

- Avascular necrosis (8-20%)
- Myositis ossificans (8-15%)
- Sciatic nerve palsy
- Early secondary arthritis
- Predisposing factors to poor result:
 - Older child
 - Severe trauma
 - Delay in reduction (> 6-8 hours)
 - Incongruous reduction
 - AVNHerrera-Soto. JAAOS 2009

Imaging after Reduction

- CT and x-ray may underappreciate pediatric acetabular fractures after dislocation (Hearty *JOT* 2011)
- Consider MRI after reduction
 - Better evaluates nonossified posterior acetabular wall
 - Assist with surgical planning

Nonconcentric Reduction

- Open reduction Approach the direction of the dislocation
 - Allows visualization of block to reduction ie. Buttonholed capsule, torn labrum, etc.
- Surgical hip dislocation is a safe technique to identify obstacles to reduction
 - Podeszwa JPO2015
 - 11 patients (mean age of 12.3 years)
 - Intraoperative findings included: labral tear (8), femoral cartilage injury (5), acetabular rim fracture (4), acetabular cartilage delamination (3), loose body (2), and femoral head osteochondral fracture (1)
 - Mean 24.5 months f/u
 - No AVN
 - At 1-year follow-up, mean Harris Hip Score was 95.8 (range, 84.7 to 100).
 - Possible risk factors for posterior hip instability
 - Acetabular dysplasia
 - relative acetabular retroversion
 - decreased femoral offset

Conclusions

- Pediatric Hip fractures and dislocations are rare injuries
- High suspicion in infants and patients with concomitant injuries leads to fewer missed injuries
- Aggressive early treatment may result in a lower complication rate than historically quoted
- Counsel the family on AVN risk initially and throughout follow-up period

References

- Baysal Ö, Eceviz E, Bulut G, Bekler H. "Early prediction of outcomes in hip fractures: initial fracture displacement" *J Pediatr Orthop B*. 2015 Dec 17.
- Canale ST, Bourland WL. Fracture of the neck and intertrochanteric region of the femur in children. J Bone Joint Surg Am. 1977;59:431–443.
- Hearty T, Swaroop VT, Gourineni P, Robinson L. "Standard radiographs and computed tomographic scan underestimating pediatric acetabular fracture after traumatic hip dislocation: report of 2 cases." J Orthop Trauma. 2011 Jul;25(7):e68-73.
- Herrera-Soto. Traumatic hip dislocations in children and adolescents: pitfalls and complications. J Am Acad Orthop Surg. 2009;17:15.
- Mehlman CT, Hubbard GW, Crawford AH, Roy DR, Wall EJ: Traumatic hip dislocation in children: Longterm followup of 42 patients. Clin Orthop Relat Res 2000;376:68-79.
- Panigrahi R, Sahu B, Mahapatra AK, Palo N, Priyardarshi A, Biswal MR. Treatment analysis of pediatric femoral neck fractures: a prospective multicenter theraupetic study in Indian Scenario. Int Orthop 2015; 39:1121–1127.
- Podeszwa DA, De La Rocha A, Larson AN, Sucato DJ. "Surgical Hip Dislocation is Safe and Effective Following Acute Traumatic Hip Instability in the Adolescent." J Pediatr Orthop. 2015 Jul-Aug;35(5):435-42.
- Ratliff AH. Fractures of the neck of the femur in children. J Bone Joint Surg Br. 1962 Aug;44-B:528-42.
- Riley PM Jr, Morscher MA, Gothard MD, Riley PM Sr. Earlier time to reduction did not reduce rates of femoral head osteonecrosis in pediatric hip fractures. J Orthop Trauma. 2015 May;29(5):231-8.
- Spence D, Di Mauri JP, Miller PE, Glotzbecker MP, Hedequist DJ, Shore BJ. Osteonecrosis after femoral neck fractures in children and adolescents: analysis of risk factors. J Pediatr Orthop 2015. [Epub ahead of print].
- Vialle R, Odent T, Pannier S, PauthierF, Laumonier F, Glorion C: Traumatic hip dislocation in childhood. J Pediatr Orthop 2005;25:138-144.

• For questions or comments, please send to ota@ota.org