Basic Principles in the Assessment and Treatment of Fractures in Skeletally Immature Patients

Joshua Klatt, MD

Original Author: Steven Frick, MD; March 2004
1st Revision: Steven Frick, MD; August 2006
2nd Revision: Joshua Klatt, MD; December 2010
Anatomy Unique to Skeletally Immature Bones

- **Anatomy**
 - Epiphysis
 - Physis
 - Metaphysis
 - Diaphysis
- Physis = growth plate
Anatomy Unique to Skeletally Immature Bones

• Periosteum
 – Thicker
 – More osteogenic
 – Attached firmly at periphery of physes

• Bone
 – More porous
 – More ductile
Periosteum

- Osteogenic
- More readily elevated from diaphysis and metaphysis than in adults
- Often intact on the concave (compression) side of the injury
 - Often helpful as a hinge for reduction
 - Promotes rapid healing
- Periosteal new bone contributes to remodeling

From: The Closed Treatment of Fractures, John Charley
Physeal Anatomy

- Gross - secondary centers of ossification
- Histologic zones
- Vascular anatomy
Centers of Ossification

- **1° ossification center**
 - Diaphyseal

- **2° ossification centers**
 - Epiphyseal
 - Occur at different stages of development
 - Usually occurs earlier in girls than boys

source: http://training.seer.cancer.gov
Physeal Anatomy

- Reserve zone
 - Matrix production
- Proliferative zone
 - Cellular proliferation
 - Longitudinal growth
- Hypertrophic zone
 - subdivided into
 - Maturation
 - Degeneration
 - Provisional calcification
Examination of the Injured Child

• Assess location of deformity or tenderness
• Carefully assess and document specifically distal neurologic and circulatory function
• Radiographic evaluation
Radiographic Evaluation of the Injured Child

- At least 2 orthogonal views
- Include joint above and below fracture
- Understand normal ossification patterns
- Comparison radiographs rarely needed, but can be useful in some situations
Special Imaging

- Evaluate intra-articular involvement
 - Tomograms, CT scan, MRI, arthrogram
- Identify fracture through nonossified area
 - Arthrogram, MRI
- Identify occult (or stress) fractures
 - Bone scan, MRI
- Assess vascularity (controversial)
 - Bone scan, MRI
Fractures common only in skeletally immature

- Physeal injuries
 - “weak link” = physis, especially toward end of growth
- Buckle or Torus Fracture
- Plastic Deformation
- Greenstick Fracture
Buckle or Torus Fracture

- Compression failure
- Stable
- Usually at metaphyseal / diaphyseal junction
Plastic Deformation

• The non-reversible deformation after elastic limit surpassed (yield strength)
• Caused predominantly by slip at microcracks
• Permanent deformity can result
 – These do not remodel well
• Forearm, fibula common
Greenstick Fractures

• Bending mechanism
• Failure on tension side
• Incomplete fracture, plastic deformation on compression side
• May need to complete fracture to realign
Salter - Harris Classification

- **Type I**
 - Through physis only
- **Type II**
 - Through physis & metaphysis
- **Type III**
 - Through physis & epiphysis
- **Type IV**
 - Through metaphysis, physis & epiphysis
- **Type V**
 - Crush injury to entire physis
- Others added later by subsequent authors

Described by Robert B. Salter and W. Robert Harris in 1963.
Salter Harris Classification
General Treatment Principles

• Type I & Type II
 – Closed reduction & immobilization
 – Exceptions
 • Proximal femur
 • Distal femur
Salter Harris Classification
General Treatment Principles

• Type III & IV
 – Intra-articular and physeal step-off needs anatomic reduction
 – ORIF, if necessary
Physeal Fractures

- Traditionally believed to occur primarily through zone of hypertrophy
- Recent studies show fractures often traverse more than one zone
- Growth disturbance/arrest potentially related to
 - Location of fracture within physeal zones
 - Disruption of vascularity
Fracture Treatment in Children
General Principles

• Children heal faster (factors)
 – Age
 – Mechanism of injury
 – Fracture location
 – Initial displacement
 – Open vs. closed injury

• Growing bones remodel more readily
• Need less immobilization time
• Stiffness of adjacent joints less likely
Treatment Principles

• When possible, restore:
 – Length, alignment & rotation

• Maintain residual angulation as small as possible using closed treatment methods
 – molded casts, cast changes, cast wedging, etc.

• Displaced intra-articular fractures will not remodel
 – anatomic reduction mandatory
Treatment Principles
Closed Methods

- Achieve adequate pain control and relaxation
 - Anesthesia
 - Local
 - Regional
 - General
 - Conscious sedation (often combination of drugs)
 - Propofol
 - Ketamine
 - Benzodiazepines
 - Narcotics
Treatment Principles
Closed Methods

• Vast majority of pediatric fractures treated by closed methods.
 – Exceptions - open fractures, intra-articular fractures, multi-trauma

• Attempt to restore alignment (do not always rely on remodeling)

• Gentle reduction of physeal injuries (adequate relaxation, traction)
Treatment Principles
Closed Methods

• Well molded casts/splints
 – Use 3-point fixation principle

• Consider immobilization method on day of injury that will last through entire course of treatment
 – Limit splint or cast changes

• Consider likelihood of post-reduction swelling
 – Cast splitting or splint

• If fracture is unstable, repeat radiographs at weekly intervals to document maintenance of acceptable position until early bone healing
Excellent reduction maintained with thin, well-molded cast/splint
Fiberglass cast applied with proper technique and split/spread is excellent way to safely immobilize limb, maintain reduction and accommodate swelling.
Treatment Principles
Loss of Reduction

- Metaphyseal/diaphyseal fractures can be remanipulated with appropriate anesthesia/analgesia up to 3 weeks after injury
- In general, do not remanipulate physeal fractures after 5-7 days
 - increased risk of physeal damage
Treatment Principles
Open Methods

• Respect and protect physis
• Adequate visualization
 – resect periosteum, metaphyseal bone, if needed
• Keep fixation in metaphysis / epiphysis if possible when much growth potential remains
 – Use smooth K-wires if need to cross physis
ORIF Salter IV
Distal Tibia

* Note epiphyseal/metaphyseal wires to track postoperative growth
Complications of Fractures
- Bone -

- Malunion
- Limb length discrepancy
- Physeal arrest
- Nonunion (rare)
- Crossunion
- Osteonecrosis
Complications of Fractures
- Soft Tissue -

- Vascular Injury
 - Especially elbow/knee

- Neurologic Injury
 - Usually neuropraxia

- Compartment Syndrome
 - Especially leg/forearm

- Cast sores/pressure ulcers

- Cast burns
 - Use care with cast saw
Complications of Fractures - Cast Syndrome -

- Patient in spica/body cast
- Acute gastric distension, vomiting
- Possibly mechanical obstruction of duodenum by superior mesenteric artery
Location Specific Pediatric Fracture Complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubitus varus</td>
<td>Supracondylar humerus fracture</td>
</tr>
<tr>
<td>Volkmann’s ischemic contracture</td>
<td>Supracondylar humerus fracture</td>
</tr>
<tr>
<td>Refracture</td>
<td>Femur fracture</td>
</tr>
<tr>
<td></td>
<td>Mid-diaphyseal radius/ulna fractures</td>
</tr>
<tr>
<td>Overgrowth</td>
<td>Femur fracture (especially < 5 years)</td>
</tr>
<tr>
<td>Nonunion</td>
<td>Lateral humeral condyle fracture</td>
</tr>
<tr>
<td>Osteonecrosis</td>
<td>Femoral neck fracture</td>
</tr>
<tr>
<td></td>
<td>Talus fracture</td>
</tr>
<tr>
<td>Progressive valgus</td>
<td>Proximal tibia fractures</td>
</tr>
</tbody>
</table>
Remodeling of Children’s Fractures

• Occurs by physeal & periosteal growth changes
• Greater in younger children
• Greater if near a rapidly growing physis
Treatment Principles

Immobilization Time

• In general, physeal injuries heal in half the time it takes for nonphyseal fracture in the same region
• Healing time dependent on fracture location, displacement
• Stiffness from immobilization rare, thus err towards more time in cast if in doubt
Remodeling of Children’s Fractures

• Not as reliable for:
 – Midshaft angulation
 – Older children
 – Large angulation (>20-30°)

• Will not remodel for:
 – Rotational deformity
 – Intraarticular deformity
Remodeling more likely if:

- 2 years or more growth remaining
- Fractures near end of bone
- Angulation in plane of movement of adjacent joint

1 week post-injury 10 weeks post-injury
Healing Salter I Distal Tibia Fracture
Growth Arrest Secondary to Physeal Injury

- Complete cessation of longitudinal growth
 - leads to limb length discrepancy
- Partial cessation of longitudinal growth
 - angular deformity, if peripheral
 - progressive shortening, if central
Physes Susceptible to Growth Arrest

- Large cross sectional area
- Large growth potential
- Complex geometric anatomy
- Distal femur > distal tibia, proximal tibia > distal radius
Growth Arrest Lines

- Transverse lines of Park-Harris Lines
- Occur after fracture/stress
- Result from temporary slowdown of normal longitudinal growth
- Thickened osseous plate in metaphysis
- Should parallel physis
Growth Arrest Lines

• Appear 6-12 weeks after fracture
• Look for them in follow-up radiographs after fracture
• If parallel physis - no growth disruption
• If angled or point to physis - suspect bar
Physeal Bar
- Imaging -

- Scanogram / Orthoroentgenogram
- Tomograms/CT scans
- MRI
- Map bar to determine location and extent
Physeal Bars
- Types -

• I - peripheral, angular deformity
• II - central, tented physis, shortening
• III - combined/complete - shortening
Physeal Bar
- Treatment -

• Address
 – Angular deformity
 – Limb length discrepancy

• Assess
 – Growth remaining
 – Amount of physis involved
 – Degree of angular deformity
 – Projected LLD at maturity
Physeal Bar Resection
- Indications -

• >2 years remaining growth
• <50% physeal involvement (cross-sectional)
• Concomitant osteotomy for >15-20º deformity
• Completion epiphyseodesis and contralateral epiphyseodesis may be more reliable in older child
Physeal Bar Resection - Techniques

- Direct visualization
- Burr/currettes
- Interpositional material (fat, cranioplast) to prevent reformation
- Wire markers to document future growth
Epiphysis or Apophysis?

• Epiphysis - forces are compressive on physeal plate
• Apophysis - forces are tensile
• Histologically distinct
 – Apophysis has less proliferating cartilage and more fibrocollagen to help resist tensile forces
Apophyseal Injuries

- Tibial tubercle
- Medial Epicondyle
 - Often associated with dislocation
- May be preceded by chronic injury/reparative processes
Pathologic Fractures

- Diagnostic workup important
 - Local bone lesion
 - Generalized bone weakness
- Prognosis dependent on biology of lesion
- Often need surgery
Polyostotic Fibrous Dysplasia
Open Fractures Principles

- IV antibiotics, tetanus prophylaxis
- Emergent irrigation & debridement
 - Ideally within 6-8 hours of injury
- Skeletal stabilization
- Soft tissue coverage
Chronic Osteomyelitis following Open Femur Fracture

- Extremely rare in children
- Serial debridement
- Followed by simultaneous bone graft and soft tissue coverage
Lawnmower Injuries

- Common cause of open fractures & amputations in children
- Most are
 - A rider or bystander (70%)
 - Under 5 years old (78%)
- High complication rate
 - Infection
 - Growth arrest
 - Amputation
- > 50% poor results

Loder, JBJS-Am, 2004
Lawnmower Injuries – often Result in Amputations
Lawnmower Injuries

• Education/Prevention key
• Children < 14 y
 – Shouldn’t operate
 – Keep out of yard
• No riders other than mower operator
Overuse Injuries

- More common as children and adolescents participate in high level athletics
- Soccer, dance, baseball, gymnastics
- Ask about training regimens
- Mechanical pain

Femoral stress fracture

Overuse Injuries

• Diagnosis
 – History/Exam
 – Serial radiographs
 – Bone scan
 – CT/MRI

• Treatment
 – Abstinence from sport/activity
 – Cast if child is overly active
 – Spica/Fixation for all femoral neck stress fxs

Femoral Shaft Stress Fracture in 12 year old Male Runner
Metal Removal in Children

• Controversial
• Historically recommended if significant growth remaining
• Indications evolving
• Intramedullary devices and plates /screws around hip still removed by many in young patients

Summary

• Pediatric musculoskeletal injuries are relatively common
• General orthopaedic surgeons can treat majority of fractures
• Remember pediatric musculoskeletal differences
• Most fractures heal, regardless of treatment
Summary

• Most important factors:
 – Patient age
 – Mechanism of injury
 – Associated injuries

• Good results – possible with all types treatment
• Trend for more invasive treatment
• Must use good clinical judgment and good technique to get good results
Bibliography

Bibliography

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org