Introduction to Orthopaedic Trauma for OR Staff

Eddie Hasty, MD
Daniel Carpenter, MD
Introduction to Orthopaedic Trauma for OR Staff

Eddie Hasty, MD
Daniel Carpenter, MD
Outline

● History/ statistics regarding orthopedic trauma

● Non-operative vs. operative fixation

● Principles of operative fixation

● Common traumatic injuries and associated treatments
History

- Splinting
- Ancient Egyptians used wooden splints tied to the extremity
History

- Splinting
 - Revra Depuy, 1895
 - Developed custom wooden splints
 - Warsaw, IN
History

• Traction
 • Developed during Middle Ages and World War I
 • Used for definitive treatment or typically prior to surgery
History

• Splinting
 • Plaster of Paris invented in 1851 by a Dutch Military surgeon
Trauma Statistics

• Leading cause of death in < 45 age group
• Blunt trauma accounts for 80% of mortality in the < 34 age group
• $75 billion annual loss due to death and disability
• Major modern epidemic
Level 1 Trauma Activation Criteria

- Traumatic cardiac arrest during transport
- Systolic blood pressure less than 90
- Respiratory compromise/intubation
- Glasgow Coma Scale less than 8
- Traumatic limb paralysis
- Amputation proximal to wrist or ankle
- Vascular compromise of extremity
- Burns with traumatic component
- Penetrating injuries to head, neck, chest, abdomen, extremities proximal to the elbow or knee

PLEASE NOTE: Criteria may vary at centers depending on State vs. ACS accreditation and institution policy
Level 2 Trauma Activation Criteria

- Glasgow Coma Scale <14, >8
- Vital Sign instability (do not meet RED criteria)
- Flail chest or multiple rib fractures
- Pneumothorax/hemothorax
- Open/depressed skull fractures
- 2 or more long bone fractures
- Crush injury to chest or pelvis
- High level of suspicion related to mechanism
- Burns
Mechanism of Injury

- 45% Falls
- 32% Motor vehicle collision
- 8% Assault
- 9% Motorcycle collision
- 6% Gunshot wounds
Polytrauma

•Definition

“blunt trauma patients whose injuries involve multiple body regions or cavities, compromise patient’s physiology, and potentially cause dysfunction of uninjured organs”

- Injury
Polytrauma

• Timing
 • Early Total Care
 - Used heavily in 1980s-1990s
 - Definitive fixation of all injuries on presentation
 • Damage Control (“DCO”)
 - Developed in 1990s
 - Temporary stabilization to ensure patient survival
Principles of Treatment

Non-operative treatment vs. Operative fixation
Non-Operative Treatment

- **Splint** → **Cast** immobilization is mainstay of most non-operative treatment

- Non-operative fracture treatment for majority of pediatric orthopedic trauma
Common “non-op” fractures

- Pediatric both bone forearm fractures
- Typically reduced in the ED with sedation
- Splint/cast for 6-8 weeks, little to no long term deficits
Common “non-op” fractures

- Pediatric tibia fracture (“spiral fracture”)
- Non-weight bearing in long leg cast
- Also option to treat minimally displaced tibial shaft fractures in adults non-operatively
Common “non-op” fractures

• Adult proximal humerus fracture
• Treated in “cuff and collar”
 • Gravity assisted
Principles of Treatment

Non-operative treatment vs. Operative fixation
Operative Indications

- Open Fractures & Compartment Syndrome
- External Fixation
- Internal Fixation
Open Fractures

• Variability in severity
• Surgical “urgency”
• Time to antibiotics and debridement is crucial

• Antibiotic choice?
 • Cefazolin: 1st line
 • Clindamycin in PCN allergic
 • Aminoglycosides if very contaminated or Type III
Compartment Syndrome

• Surgical emergency
• Typically the result of traumatic injury to soft tissue +/- fracture
• Excessive pressure within closed space decreases blood flow to the tissues
• Commonly lower leg but can be thigh, buttock, hand, forearm, arm, foot
Compartment Syndrome

Treatment is emergent fasciotomy
Operative Indications

- Open Fractures & Compartment Syndrome
- External Fixation
- Internal Fixation
External Fixation

• Primarily temporizing but can be definitive treatment

• Benefits
 • Rapid (“DCO”)
 • Soft tissue concerns
External Fixation

• Potential disadvantages
 • Need for repeat surgery
 • Pin site infection
 • Cumbersome/ Cosmesis
Operative Indications

- Open Fractures & Compartment Syndrome
- External Fixation
- Internal Fixation
Internal Fixation

- Closed reduction percutaneous pinning
- Intramedullary nails
- Plate and screw constructs
Closed Reduction Percutaneous Pinning

- Fractures not requiring open reduction
- Often used in treatment of operative pediatric trauma

- Ex 1: Pediatric Supracondylar Humerus Fracture
 - Often surgical urgency due to neurovascular issues
 - Most common surgical fracture in pediatrics
Closed Reduction Percutaneous Pinning

- Fractures not requiring open reduction
- Often used in treatment of operative pediatric trauma

- Ex 2: Minimally displaced femoral neck fracture
 - Reduction through fracture table
 - Percutaneous screws for fixation
Intramedullary Nailing

- Often used in the treatment of long bone fractures (femur, tibia)
- Goal is to establish length, alignment, and rotation: “internal splint”
- Fracture heals secondarily with callus formation
 - Callus is cartilage that is replaced by new bone
Intramedullary Nailing

• **Benefits**
 - Minimally invasive
 - Does not disrupt bone blood supply
 - Usually allows weightbearing after surgery
 - High union rates

• **Contraindications/Risks**
 - Unable to perform direct reduction
 - Limited use with far distal and proximal fractures
 - Reports of knee and hip pain from entry portal
Femoral shaft and tibia fractures

- High energy mechanism
- Commonly treated with intramedullary nailing
- Typically patients may “WBAT” following surgery
Femoral Intramedullary Nailing

- Antegrade (Through hip)
 - Common, and can be used for all shaft fractures
 - Starting point options
- Retrograde (Through knee)
 - Do not need fracture table
 - Bilateral femur fractures
 - Floating knee
 - Distal fracture
Antegrade Femoral Nail
Retrograde Intramedullary nail
Tibial Intramedullary Nailing

• Indications
 - Most adult tibial shaft fractures
 - Approach
 - Parapatellar
 - Suprapatellar
Tibial Intramedullary Nailing

- Proximal fractures have high incidence of deformity
 - Due to pull of muscular insertion points
Tibial Intramedullary Nail
Plate and screw constructs

- Plate fixation
 - Types: compression, locking, recon, anatomical
 - Functions: neutralization, compression, bridging, buttress
- Usually require open reduction
- Multiple plate and screw combinations available
Common traumatic injuries and associated treatments

- Pelvic ring injuries
- Acetabular fractures
- Femur and tibia fractures
- Hip fractures
- Both bone forearm fracture
Pelvic Ring Injuries

- High Energy
- High Mortality and Morbidity
- Hemorrhage
Pelvic Ring Injuries

• Open Book: Initial Management
 • Pelvic binder or sheet to close potential space for hemorrhage
Pelvic Ring Injuries

- Typical definitive management
 - Sacroiliac screws (posterior injury)
 - ORIF of symphysis (anterior injury)
Acetabular Fractures

- High energy in young patients
- Low energy in elderly patients
- High incidence of associated injuries
 - Extremity 36%
 - Head injury 19%
 - Chest injury 18%
Acetabular Fractures

• Usually treated with ORIF
 - Multiple approaches
 - Non-weightbearing for 6-12 weeks

• Acute Total Hip Arthroplasty

• Complications
 - Post-traumatic arthritis
 - Osteonecrosis
 - Nerve Palsy
 - Heterotopic Ossification
Proximal Femur Fractures

- Femoral Neck
- Intertrochanteric
- Subtrochanteric
Geriatric Hip Fractures

- In U.S, 90% discharged to SNF
- High in-hospital and 1 year mortality
- Goal is early weight bearing and mobilization

- Numerous treatment options
 - CRPP
 - Cephalomedullary nail
 - Sliding hip screw
 - Hemiarthroplasty
Both Bone Forearm Fracture

- Operative fracture in adults (vs. non-op peds)
- Plate and screw construct both radius and ulna
A brief discussion about OR tables

- Regular table
- Fracture table
- OSI Flat top table
Regular OR Table

- Not radiolucent
- Useful for procedures that do not require fluoroscopy above the knee
- Useful for ankle fractures, arm/forearm fractures
Fracture Table

- Holds the lower extremity in traction
- Hip fractures requiring traction
- Antegrade Femoral nailing
- Also can be used for total hip arthroplasty
OSI Flat Top

- Radiolucent
- Useful for procedures that DO require fluoroscopy
Summary

• Orthopaedic traumatic injuries are common and often occur in setting of high energy trauma with multi-organ involvement

• Mainstay of treatment involves stabilization/fixation

• Goal is early mobilization and function

• Generally acceptable outcomes but occasional severe long term sequelae
Questions?
References

• O'Toole RV, Hui E, Chandra A, and Nascone JW. How often does open reduction and internal fixation of geriatric acetabular fractures lead to hip arthroplasty? J Orthop Trauma. United States; 2014;28(3):148-53