Introduction to Orthopaedic Trauma for OR Staff

Eddie Hasty, MD Daniel Carpenter, MD

Introduction to Orthopaedic Trauma for OR Staff

Eddie Hasty, MD Daniel Carpenter, MD

Outline

- History/ statistics regarding orthopedic trauma
- Non-operative vs. operative fixation
- Principles of operative fixation
- Common traumatic injuries and associated treatments

- Splinting
 - Ancient Egyptians used wooden splints tied to the extremity

- Splinting
 - Revra Depuy, 1895
 - Developed custom wooden splints
 - •Warsaw, IN

Traction

Developed during Middle Ages and World War I

Used for definitive treatment or typically prior to

surgery

- Splinting
 - Plaster of Paris invented in 1851 by a Dutch Military surgeon

Trauma Statistics

- Leading cause of death in < 45 age group
- Blunt trauma accounts for 80% of mortality in the
 < 34 age group
- \$75 billion annual loss due to death and disability
- Major modern epidemic

Level 1 Trauma Activation Criteria

- Traumatic cardiac arrest during transport
- Systolic blood pressure less than 90
- Respiratory compromise/intubation
- Glasgow Coma Scale less than 8
- Traumatic limb paralysis
- Amputation proximal to wrist or ankle
- Vascular compromise of extremity
- Burns with traumatic component
- Penetrating injuries to head, neck chest, abdomen, extremities proximal to the elbow or knee

PLEASE NOTE: Criteria may vary at centers depending on State vs. ACS accreditation and institution policy

Level 2 Trauma Activation Criteria

- Glasgow Coma Scale <14, >8
- Vital Sign instability (do not meet RED criteria)
- Flail chest or multiple rib fractures
- Pneumothorax/hemothorax
- Open/depressed skull fractures
- 2 or more long bone fractures
- Crush injury to chest or pelvis
- High level of suspicion related to mechanism
- Burns

Mechanism of Injury

- •45% Falls
- •32% Motor vehicle collision
- •8% Assault
- •9% Motorcycle collision
- •6% Gunshot wounds

Polytrauma

Definition

"blunt trauma patients whose injuries involve multiple body regions or cavities, compromise patient's physiology, and potentially cause dysfunction of uninjured organs"

- Injury

Polytrauma

- Timing
 - Early Total Care
 - Used heavily in 1980s-1990s
 - Definitive fixation of all injuries on presentation
 - Damage Control ("DCO")
 - Developed in 1990s
 - Temporary stabilization to ensure patient survival

Principles of Treatment

Non-operative treatment

VS.

Operative fixation

Non-Operative Treatment

- Splint→ Cast immobilization is mainstay of most non-operative treatment
- Non-operative fracture treatment for majority of <u>pediatric</u> orthopedic trauma

Common "non-op" fractures

- Pediatric both bone forearm fractures
- Typically reduced in the ED with sedation
- Splint/cast for 6-8 weeks,
 little to no long term deficits

Common "non-op" fractures

- Pediatric tibia fracture ("spiral fracture")
- Non-weight bearing in long leg cast
- Also option to treat minimally displaced tibial shaft fractures in adults non-operatively

Common "non-op" fractures

- Adult proximal humerus fracture
- Treated in "cuff and collar"
 - Gravity assisted

Principles of Treatment

Non-operative treatment

VS.

Operative fixation

Operative Indications

- Open Fractures & Compartment Syndrome
- External Fixation
- Internal Fixation

Open Fractures

- Variability in severity
- Surgical "urgency"
- Time to antibiotics and debridement is crucial
- Antibiotic choice?
 - Cefazolin: 1st line
 - Clindamycin in PCN allergic
 - Aminoglycosides if very contaminated or Type III

Compartment Syndrome

- Surgical emergency
- Typically the result of traumatic injury to soft tissue +/- fracture
- Excessive pressure within closed space decreases blood flow to the tissues
- Commonly lower leg but can be thigh, buttock, hand, forearm, arm, foot

Compartment Syndrome

Treatment is emergent fasciotomy

Operative Indications

- Open Fractures & Compartment Syndrome
- External Fixation
- Internal Fixation

External Fixation

- Primarily temporizing but can be definitive treatment
- Benefits
 - Rapid ("DCO")
 - Soft tissue concerns

External Fixation

- Potential disadvantages
 - Need for repeat surgery
 - Pin site infection
 - Cumbersome/ Cosmesis

Operative Indications

- Open Fractures & Compartment Syndrome
- External Fixation
- Internal Fixation

Internal Fixation

- Closed reduction percutaneous pinning
- Intramedullary nails
- Plate and screw constructs

Closed Reduction Percutaneous Pinning

- Fractures not requiring open reduction
- Often used in treatment of operative pediatric trauma

- Ex 1: Pediatric Supracondylar Humerus Fracture
 - Often surgical urgency due to neurovascular issues
 - Most common surgical fracture in pediatrics

Closed Reduction Percutaneous Pinning

- Fractures not requiring open reduction
- Often used in treatment of operative pediatric trauma

- Ex 2: Minimally displaced femoral neck fracture
 - Reduction through fracture table
 - Percutaneous screws for fixation

Intramedullary Nailing

- Often used in the treatment of long bone fractures (femur, tibia)
- Goal is to establish length, alignment, and rotation: "internal splint"
- Fracture heals secondarily with callus formation
 - Callus is cartilage that is replaced by new bone

Intramedullary Nailing

- Benefits
 - Minimally invasive
 - Does not disrupt bone blood supply
 - Usually allows weightbearing after surgery
 - High union rates
- Contraindications/Risks
 - Unable to perform direct reduction
 - Limited use with far distal and proximal fractures
 - Reports of knee and hip pain from entry portal

Femoral shaft and tibia fractures

- High energy mechanism
- Commonly treated with intramedullary nailing
- Typically patients may "WBAT" following surgery

Femoral Intramedullary Nailing

- Antegrade (Through hip)
 - Common, and can be used for all shaft fractures
 - Starting point options
- Retrograde (Through knee)
 - Do not need fracture table
 - Bilateral femur fractures
 - Floating knee
 - Distal fracture

Antegrade Femoral Nail

R

Retrograde Intramedullary nail

Tibial Intramedullary Nailing

- Indications
 - Most adult tibial shaft fractures
 - Approach
 - Parapatellar
 - Suprapatellar

Tibial Intramedullary Nailing

- Proximal fractures have high incidence of deformity
 - Due to pull of muscular insertion points

Tibial Intramedullary Nail

Plate and screw constructs

- Plate fixation
 - Types: compression, locking, recon, anatomical
 - Functions: neutralization, compression, bridging, buttress
- Usually require open reduction
- Multiple plate and screw combinations available

Common traumatic injuries and associated treatments

- Pelvic ring injuries
- Acetabular fractures
- Femur and tibia fractures
- Hip fractures
- Both bone forearm fracture

Pelvic Ring Injuries

- High Energy
- High Mortality and Morbidity
- Hemorrhage

Pelvic Ring Injuries

- Open Book: Initial Management
 - Pelvic binder or sheet to close potential space for hemorrhage

Pelvic Ring Injuries

- Typical definitive management
 - Sacroiliac screws (posterior injury)
 - ORIF of symphysis (anterior injury)

Acetabular Fractures

- High energy in young patients
- Low energy in elderly patients
- High incidence of associated injuries
 - Extremity 36%
 - Head injury 19%
 - Chest injury 18%

Acetabular Fractures

- Usually treated with ORIF
 - Multiple approaches
 - Non-weightbearing for 6-12 weeks
- Acute Total Hip Arthroplasty
- Complications
 - Post-traumatic arthritis
 - Osteonecrosis
 - Nerve Palsy
 - Heterotopic Ossification

Proximal Femur Fractures

- Femoral Neck
- Intertrochanteric
- Subtrochanteric

Femoral Neck

Intertrochanteric

Subtrochanteric

Geriatric Hip Fractures

- In U.S, 90% discharged to SNF
- High in-hospital and 1 year mortality
- Goal is early weight bearing and mobilization
- Numerous treatment options
 - CRPP
 - Cephalomedullary nail
 - Sliding hip screw
 - Hemiarthroplasty

Both Bone Forearm Fracture

- Operative fracture in adults (vs. non-op peds)
- Plate and screw construct both radius and ulna

A brief discussion about OR tables

- Regular table
- Fracture table
- OSI Flat top table

Regular OR Table

- Not radiolucent
- Useful for procedures that do not require fluoroscopy above the knee
- Useful for ankle fractures, arm/forearm fractures

Fracture Table

- Holds the lower extremity in traction
- Hip fractures requiring traction
- Antegrade Femoral nailing
- Also can be used for total hip arthroplasty

OSI Flat Top

- Radiolucent
- Useful for procedures that DO require fluoroscopy

Summary

- Orthopaedic traumatic injuries are common and often occur in setting of high energy trauma with multi-organ involvement
- Mainstay of treatment involves stabilization/fixation
- Goal is early mobilization and function
- Generally acceptable outcomes but occasional severe long term sequelae

Questions?

References

- •Neria Butcher, Zsolt J Balogh. The definition of polytrauma: the need for international consensus. Injury, Int. J. Care Injured (2009) 40S4, S12–S22
- •Holstein JH1, Culemann U, Pohlemann T; Working Group Mortality in Pelvic Fracture Patients. What are predictors of mortality in patients with pelvic fractures? Clin Orthop Relat Res. 2012 Aug;470(8):2090-7. doi: 0.1007/s11999-012-2276-9.
- Taeger G, Ruchholtz S, Waydhas C, Lewan U, Schmidt B, Nast-Kolb D. Damage control orthopedics in patients with multiple injuries is effective, time saving, and safe. J Trauma. 2005 Aug;59(2):409-16; discussion 417.
- Goodman DC, Fisher ES, Chang CH. After hospitalization: a Dartmouth Atlas report on post-acute care for Medicare beneficiaries. A report of the Dartmouth Atlas project. 2011.
- Nikkel LE, Kates SL, Schreck M, Maceroli M, Mahmood B, Elfar JC. Length of hospital stay after hip fracture and risk of early mortality after discharge in New York state: retrospective cohort study. BMJ 2015;351:h6246
- •Scott Schnell, MD, Susan M. Friedman, MD, MPH, Daniel A. Mendelson, MS, MD, Karilee W. Bingham, MS, RN, FNP, Stephen L. Kates, MD. The 1-Year Mortality of Patients Treated in a Hip Fracture Program for Elders. Geriatr Orthop Surg Rehabil. 2010 Sep; 1(1): 6–14.
- •Koval KJ1, Friend KD, Aharonoff GB, Zukerman JD. Weight bearing after hip fracture: a prospective series of 596 geriatric hip fracture patients. J Orthop Trauma. 1996;10(8):526-30.
- Haidukewych GJ. Acetabular fractures: the role of arthroplasty. Orthopedics. United States; 2010;33(9):645.
- Daurka JS, Pastides PS, Lewis A, Rickman M, and Bircher MD. Acetabular fractures in patients aged > 55 years: a systematic review of the literature. Bone Joint J. England; 2014;96- B(2):157-63.
- Gary JL, Lefaivre KA, Gerold F, Hay MT, Reinert CM, and Starr AJ. Survivorship of the native hip joint after percutaneous repair of acetabular fractures in the elderly. Injury. Netherlands; 2011;42(10):1144-51. 6.
- •Tannast M, Najibi S, and Matta JM. Two to twenty-year survivorship of the hip in 810 patients with operatively treated acetabular fractures. J Bone Joint Surg Am. United States; 2012;94(17):1559-67.
- •O'Toole RV, Hui E, Chandra A, and Nascone JW. How often does open reduction and internal fixation of geriatric acetabular fractures lead to hip arthroplasty? J Orthop Trauma. United States; 2014;28(3):148-53