Fragility Fractures- the problem, advances & treatment

Stephen L. Kates, MD
Professor and Chairman
Department of Orthopaedic Surgery
Virginia Commonwealth University
Richmond, VA

What is covered

- Demographics
- Bone issues
- Mechanisms
- Basic Surgical considerations
- Avoiding failures
- Post fracture management

Fragility Fracture

- Caused by a fall from a standing height or less
- Osteoporosis is most common cause
- 33 to 50% of women will get a fragility fracture
- 15 to 33% of men get a fragility fracture
- Likelihood increases with age

Fragility Fractures- Risk Factors other than osteoporosis

Women: Diabetes
 Previous fractures
 High BMI - ankle and prox humerus

Men: Diabetes
 Mental Health hospitalizations

Holmberg et al; Osteoporosis Int. 2006

Incidence of Osteoporotic Fractures(United States)

Demography: projection of Hip Fractures growth from 1950 to 2050

Location	1950	2050N
North America	378,000	742,000
South America	100,000	629,000
Europe	400,000	668,000
Asia	600,000	3,250,000

What is Osteoporosis?

Skeletal disorder with

- Compromised bone strength
- Increased risk of fractures
- Deterioration of micro-architecture
- Most common bone disease
- Genetic basis (under study)
- Uncoupling of osteoblastic & osteoclastic activity

Current Problem in US

- >5 million older women at high risk of fx
- 1/3 of these have osteoporosis diagnosis
- ½ of these are on appropriate treatment

Gehlbach et al; Osteoporosis International 2007 June

Osteoporosis

Loss of critical bony inter connections, thinner internal support

Trabecular bone loss and thinning of remaining bone is seen above

Osteoporosis is loss of bone mineral density and critical reduction in strength of bony architecture

Bones change during Life

- Modeling as a child and adolescent
- Remodeling throughout life
- Peak bone mass reached in your 20's
- Remodeling allows bones to heal
- Resorption in later years

Bone mass changes during life

- Peak bone mass is reached at age 25
- Heredity
- Medications
- Diet, tobacco and alcohol
- Race / Weight

Bending Stiffness / Cross section

Cross section of normal bone

Inner and outer Diameters increase

Cross section through Osteoporotic bone

Issues with Osteoporotic Bone Fixation in surgery

- Poor screw purchase
- Fragile cortices
- Difficult or impossible to get rigid fixation
- Initial deformity prone to recurrence

Conventional plate / screw failure

Screws pull out of bone sequentially

Locked plate failure all screws fail at once

Plate-screw connection Is solid Screw-bone interface Fails as a unit

Mono- vs. bicortical screw fixation

Monocortical screw fixation is not good in fragility fractures

With thin cortices

- Choose screw diameter as large as possible
- Bi-cortical fixation

"Working length" of bicortical screws

3x More
Stable
Mono locked
Std Bicortical
Torsional stiffness

Gautier and Sommer, Injury 2003, 34 (Suppl) S-B63-B76.

Bridging with Locked Implant

Concepts of Plate Fixation in Osteoporotic Bone

- Tough to employ compression technique
- Bridge plating useful
- Neutralization plates useful
- Long plate for bone protection

Imperfect reduction--but the fracture has Gone on to heal

Why is osteoporotic Bone a problem?

- Loss of cortical thickness
- Loss of bony tracebulae
- Loss of microarchitecture

Signs your patient has bad quality bone

- Poor dentition: Teeth are formed similar to bone
- Multiple vertebral compression fractures
- Previous hip, radius or tibial plateau fracture
- End stage renal disease
- On steroid therapy
- Anticonvulsant use

Osteoporotic Trabecular Bone: Clinical Consequences

- Cut out
- Loss of screw fixation
- Spontaneous fractures

Choice of implant Many options, reduce the fracture first

One Fixed angle with Blade plate

Multiple fixed angles, longer implant

Varus collapse due to lack of medial buttress

Technique: Impaction intraoperatively

Augmentation in practice

If bone is very poor, consider prosthetic replacement

Don't forget the soft tissues

Exposed implant = infection

Incidence of Failures

- Hip: 3 to 5%
- Distal Femur: 5%'
- Proximal humerus 30 to 40%"
- Ankle 12%*
- Distal Humerus 19%

Case Example: Female 82 years

Lag screw cuts out because the screw is not inserted deeply in the head A 2 hole plate is also good enough, 4 hole plate is not needed

What areas are at risk for Fixation

- Metaphyseal > Diaphyseal Bone
- Hip
- Distal Femur
- Proximal Humerus
- Ankle
- Proximal Tibia
- Distal Radius

Types of Failure

- Cut-out
- Cut through
- Plate pull –off
- Varus collapse
- Non-union

What Factors contribute to Fixation Failure?

- Poor bone quality
- Metabolic Bone problems
- Fracture Reduction quality
- Implant choice
- Implant Placement

Metabolic Bone Problems - secondary

- Vitamin D deficiency
- Steroids
- Hyperparathyroidism
- Dialysis

• All cause dramatically reduced bone quality and poor healing

Male 70 years, alcoholic

"AP and Lateral"

Fell while intoxicated

Fixed with Strut Graft and Rigid

Short working Length of plate

15 months

Knee pain and can't walk

Nonunion Broken plate

Causes: Disturbed biology
No metabolic bone
assessment

Fracture Reduction Quality matters!

- Bony apposition important Avoid a gap
- Stable reduction
- Correct rotation
- Angular alignment

Example of Reduction induced failure

Implant Choice

- Correct length and working length
- Correct Principle
- Correct number of screws
- Correct stiffness

Implant choice A nail is better here

Wrong Implant Choice

Wrong implant Nail too large for canal

Femoral Bow Nails that are too straight....

Watch anterior bow*

* Penetration of distal femoral anterior cortex during Intramedullary nailing for subtrochanteric fractures
Ostrum and Levy, J Orthop Trauma April 2006
Haidukewych, G JBJS 2009

Implant Placement

- Correct placement is often critical
- Tip Apex distance Hip
- Correct starting point for IM Nail
- Correct location on the bone

Poor Tip-Apex distance

Starting Point Error

Plate on Wrong side of bone

Screws too close to joint

Follow the 4 AO Principles

- 1. Accurate fracture reduction
- 2. Stable Fixation
- 3. Preserve Blood Supply
- 4. Early mobilization of limb and patient

How to Fix the Failures

- Revision osteosynthesis
- Prosthetic Replacement
- Change Fixation method

Cut Through

Nail Cut-out Revised to Prosthesis

Lateral bow Makes straight Stem rubs lateral cortex

Cut out revised to tumor prosthesis -Too much surgery

Cut through with second fracture

Difficult Initial surgery

Minor re-injury

Revised to Prosthesis

Failed Revision Osteosynthesis Revised to Tumor prosthesis

Female 83 yrs -Failed Plating Revised to Nail

14 months post plating

7 months after revision

Inadequate fixation Revision to prosthesis

Plate pull-off revised to Nail

Screw Penetration

Early Screw Penetration Revised by shortening screws

Preoperative

2 weeks, screw in joint

6 months

Failed DCS revised to augmented hip screw

Calcium phosphate cement augmentation

Avoid Failures correct Guide wire placement

Assess the fracture for stability

Fractured calcar Varus position

Impact the Fracture for stability

3 months

9 months

Avoid Stress Concentration between implants

Failed Fixation, 4 surgeries

Broken plate Installed 5 months earlier

Varus deformity

Low Vitamin D level

Correct the deformity.... and metabolic problem

Don't leave a void if possible Female, 73 years with osteoporosis

Summary

- Plan your cases
- Assess the bone quality
- Proper implant choice and placement
- Reduce the fracture
- Impact the fracture if needed
- Respect the bone biology
- Bridging construct for comminution

Basic Post Fracture Osteoporosis Workup: Metabolic

- 25-OH Vitamin D level
- Intact PTH Level
- Calcium
- Phosphate
- TSH
- Albumin level

Causes of Osteoporosis

- Primary
- Secondary
- Nutrition
- Lifestyle (Exercise, smoking, alcohol)
- Hormonal problems
- Age
- Medications (steroids, seizure meds)

Keeping the bone healthy

- Genetic factors unclear transmission
- Moderate Physical activity
- Calcium
- Vitamin D
- Hormones Parathyroid hormone

Calcitonin

Estrogen

Testosterone

Remember Metabolic Health

- Serum Albumin < 3 = higher mortality**
- Vitamin D levels often low *
- Parathyroid Hormone level
- Calcium level
- Avoid malnutrition and Osteomalacia in your elderly patients!

- •Guisti, Barone, Razzano, Pizzonia, Oliveri, Palummmeri, Pioli; J Endocrinol Invest
- Oct 2006, **Aging Clin Exp Res Oct 2006; Bukata et al, CORR 2011

Diagnosis of Osteoporosis

• DEXA Scan is best at present

T score
Compares density relative to peak bone mass
(Normal healthy 25 year old)
Matched to sex and race
Z score

Compares density to peers

Osteoporosis: a 2-Stage Disease

- With
- Without Fracture

Hip Fracture Lifetime incidence in women 1:6

Diagnosis of Osteoporosis Using Central DXA WHO-Definition

T-score

Normal > -1

Osteopenia < -1 and > -2.5

Osteoporosis \leq -2.5

Severe ≤ -2.5 with Fracture Osteoporosis

Mainly for Spine and Hip in Women

Who Should be Tested?

- All women aged 65 and older regardless of risk factors*
- Younger postmenopausal women with one or more risk factors (other than being white, postmenopausal and female).
- Postmenopausal women who present with fractures (to confirm the diagnosis and determine disease severity).
- Many women with osteopenia will fracture*

^{*}Pasco et al.; Osteoporosis International, 2006

What Medicare covers DEXA every 2 years

- Estrogen deficient women at clinical risk for osteoporosis
- Individuals with vertebral abnormalities
- Individuals receiving, or planning to receive, longterm glucocorticoid (steroid) therapy
- Individuals with primary hyperparathyroidism
- Individuals being monitored to assess the response or efficacy of an approved osteoporosis drug therapy.

Workup for the Fragility Fracture patient

- Labs: Basic
 - Intact PTH
 - 25 vit D level
 - serum calcium

Advanced

- serum alkaline phosphatase
- 24 hour urinary calcium
- urine N-telopeptide
- TSH

What about Men?

- Higher peak bone mass
- Fragility fracture
- Steroid use
- Forearm fracture
- Vertebral fracture

Osteoporosis is Treatable

- Nutrition
- Exercise
- Lifestyle changes
- Medications
- Fall prevention
- No treatment completely abolishes fracture risk

Nutrition

- Calcium requirements
- Young 1000mg / day in 2 doses
- Older 1500mg/d in 3 doses
- Calcium gluconate
- Calcium Citrate
- Calcium Carbonate
- Whichever is tolerated

Body weight

- Very low weight is a risk factor BMI< 18
- Normal weight best
- Obesity predisposes to falls

Vitamin D3

- Deficiency is common with age
- Lack of sunlight
- Deficiency = Osteomalacia
- Very common in Nursing homes
- May cause fracture not to heal

Vitamin D3

- Vitamin D3 -not D2- is best
- Dose Young 400 units / d
- Older 800 units / day maintenance
- If deficient, D2 50,000 units/ wk
- 25 OH Vit D level to diagnose deficiency
- Sunlight helps Essential for bone health!!!!!!

Exercise

- Weight bearing exercise best
- Low impact exercise can help prevent falls
- Weight training
- Tai Chi
- Exercise helps other body systems too
- Patients have control over this!
- Helps to start young

Fall Prevention

- Medications can cause falls
- Poor lighting
- Throw rugs
- Fall proofing the home
- Exercise, balance and strength training
- Correct the vision
- Pets

Lifestyle

- Alcohol in moderation only
- Alcohol can cause osteoporosis
- Alcohol can cause falls
- Cigarette smoking causes osteoporosis
- Slows bone healing
- Smoking cessation is the best plan

Medications

- Many medications harm the bones
- Steroids (Prednisone)
- Seizure drugs
- Elevated Thyroid hormone
- Cancer drugs (Lupron)
- Avoid these if possible
- DEXA scans necessary with these

Osteoporosis Medications

- Antiresorptive drugs
- Anabolic therapies

Inhibitors of bone resorption

Osteoporosis Treatments

Stimulators of bone formation Anabolic

Stimulators of bone formation Inhibitor of bone resorption

Anti-resorptive Therapies

Bisphosphonates

- Non hormone compounds
- Bind to Hydroxyapatite crystals
- Inhibit Osteoclastic activity
- Cause Osteoclasts to die prematurely
- Half life 6 to 10 years in bone
- Can be taken by mouth or IV

Oral Bisphosphonates

- Alendronate (Fosamax)
- Risedronate (Actonel)
- Ibandronate (Boniva)
- IV bisphosphonates are used when oral medications are not tolerated
- Work for men and women
- Best treatment for steroid osteoporosis

Bisphosphonates - problems

- Reflux
- Must be upright for one hour
- Mostly GI symptoms
- Rare: osteonecrosis of mandible
- Long term effects not known
- Need to take Ca, Vit D*
- Compliance a problem*

Anti-Resorptive: SERM's

- Raloxifene and Tamoxifen
- Bind to Estrogen Receptor
- Have a good effect on Bone density
- For women only
- Should be used with Calcium, Vit D
- Reduces risk of breast cancer
- Increases risk of DVT

Calcitonin

- Hormone that regulates calcium, bone
- Synthetic Salmon calcitonin
- Decreases bone resorption
- Reduces pain from Vertebral fractures
- Nasal spray or injection

Teriparatide (Forteo)

- Synthetic hormone like human Parathyroid hormone 1-34
- Builds bone mass
- Improves bone quality
- Increases the life span of osteoblasts
- Injection for 2 to 3 years
- May increase periosteal thickness, activity

Teriparatide (Forteo)

- FDA approved for women with:
- High fracture risk
- Multiple fractures
- Failure of other therapies
- For men with:
- Hypogonadal osteoporosis
- High fracture risk men

Teriparatide Contraindications PDR Black Box

- Previous Radiation therapy
- Paget's disease
- Young patients open physes

Very Expensive \$\$\$\$

Treatment following Fragility Fractures

- Published low rates 15 -20%
- Should be much higher 50% plus*
- Communication between hospital, MD's and patients essential**
- CMS planning to penalize us for this

^{*}Gidwani et al, Ann RCS Engl, 2007

^{**} Meadows et al; Osteoporosis Int ,2007 Feb

The Orthopaedist's Responsibility CMS guidelines

- Diagnose the Fragility Fracture as such
- Obtain Lab tests
- DEXA scan
- Institute Therapy

or

Refer for treatment to PCP or Metabolic Bone Clinic