Bone Grafting and Bone Graft Substitutes

Original Author: James Krieg, MD
Revision Author: David Hak, MD
Last Revision May 2010
Bone Graft Function

• Structural support of articular fracture
 – Tibial plateau fracture
 – Prevent post-op collapse
• Void filler to prevent fracture
 – Cyst excision
• Improved healing of fracture and nonunions
 – Speed healing
 – Fewer nonunions
Mechanisms of Bone Growth

- Osteoconduction
 - Provides matrix for bone growth
- Osteoinduction
 - Growth factors encourage mesenchymal cells to differentiate into osteoblastic lineages
- Osteogenesis
 - Transplanted osteoblasts and periosteal cells directly produce bone
Types of Bone Grafts

- Autograft
- Allograft
- Bone graft substitutes
 - Most have osteoconductive properties
- Osteoinductive agents
 - rhBMP-2 (Infuse) and rhBMP-7 (OP-1)
Autogenous Bone Graft

• “Gold standard”
 – Standard by which other materials are judged
• May provide osteoconduction, osteoinduction and osteogenesis
• Drawbacks
 – Limited supply
 – Donor site morbidity
Autogenous Bone Grafts

- Cancellous
- Cortical
- Free vascular transfers
- Bone marrow aspirate
Cancellous Bone Grafts

- Three dimensional scaffold (osteoconductive)
- Osteocytes and stem cells (osteogenic)
- A small quantity of growth factors (osteoinductive)

- Little initial structural support
- Can gain support quickly as bone is formed
Cortical Bone Grafts

• Less biologically active than cancellous bone
 – Less porous, less surface area, less cellular matrix
 – Prologed time to revascularizarion

• Provides more structural support
 – Can be used to span defects

• Vascularized cortical grafts
 – Better structural support due to earlier incorporation
 – Also osteogenic, osteoinductive
 • Transported periosteum
Bone Marrow Aspirate

• Osteogenic
 – Mesenchymal stem cells (osteoprogenitor cells) exist in a 1:50,000 ratio to nucleated cells in marrow aspirate
 – Numbers decrease with advancing age
 – Can be used in combination with an osteoconductive matrix
Autograft Harvest

• Cancellous
 – Iliac crest (most common)
 • Anterior- taken from gluteus medius pillar
 • Posterior- taken from posterior ilium near SI joint
 – Metaphyseal bone
 • May offer local source for graft harvest
 – Greater trochanter, distal femur, proximal or distal tibia, calcaneus, olecranon, distal radius, proximal humerus
Autograft Harvest

• Cancellous harvest technique
 – Cortical window made with osteotomes
 • Cancellous bone harvested with gouge or curette
 – Can be done with trephine instrument
 • Circular drills for dowel harvest
 • Commercially available trephines or “harvesters”
 • Can be a percutaneous procedure
Autograft Harvest

• Cortical
 – Fibula common donor
 • Avoid distal fibula to protect ankle function
 • Preserve head to keep LCL, hamstrings intact
 – Iliac crest
 • Cortical or tricortical pieces can be harvested in shape to fill defect
Bone Allografts

• Cancellous or cortical
 – Plentiful supply
 – Limited infection risk (varies based on processing method)
 – Provide osteoconductive scaffold
 – May provide structural support
Bone Allografts

- Available in various forms
 - Processing methods may vary between companies / agencies
- Fresh
- Fresh Frozen
- Freeze Dried
Bone Allografts

• Fresh
 – Highly antigenic
 – Limited time to test for immunogenicity or diseases
 – Use limited to joint replacement using shape matched osteochondral allografts
Bone Allografts

- Fresh frozen
 - Less antigenic
 - Time to test for diseases
 - Strictly regulated by FDA
 - Preserves biomechanical properties
 - Good for structural grafts
Bone Allografts

- Freeze-dried
 - Even less antigenic
 - Time to test for diseases
 - Strictly regulated by FDA
 - Can be stored at room temperature up to 5 years
 - Mechanical properties degrade
Graft Incorporation

- Hematoma formation
 - Release of cytokines and growth factors
Graft Incorporation

• Hematoma formation
 – Release of cytokines and growth factors

• Inflammation
 – Development of fibrovascular tissue
Graft Incorporation

- Hematoma formation
 - Release of cytokines and growth factors
- Inflammation
 - Development of fibrovascular tissue
- Vascular ingrowth
 - Often extending Haversian canals
Graft Incorporation

• Hematoma formation
 – Release of cytokines and growth factors
• Inflammation
 – Development of fibrovascular tissue
• Vascular ingrowth
 – Often extending Haversian canals
• Focal osteoclastic resorption of graft
Graft Incorporation

- Hematoma formation
 - Release of cytokines and growth factors
- Inflammation
 - Development of fibrovascular tissue
- Vascular ingrowth
 - Often extending Haversian canals
- Focal osteoclastic resorption of graft
- Intramembranous and/or endochondral bone formation on graft surfaces
Graft Incorporation

- Cancellous bone interface between graft and host bone
Graft Incorporation

- Cortical allograft strut graft placed next to cortex of host
- After 4 years of incorporation
Bone Graft Substitute Incorporation

- Partial incorporation of hydroxyapatite bone graft substitute
- Biopsy of material obtained 1 year post-op
Bone Graft Substitutes

• Need for bone graft alternatives has lead to development of numerous bone graft substitutes
• Avoid morbidity of autogenous bone graft harvest
• Mechanical properties vary
• Most offer osteoconductive properties
• Some provide osteoinductive properties
Bone Graft Substitutes

Potential Roles

• Extender for autogenous bone graft
 – Large defects
 – Multiple level spinal fusion
• Enhancer
 – To improve success of autogenous bone graft
• Substitute
 – To replace autogenous bone graft
Bone Graft Substitutes

- Calcium phosphate
- Calcium sulfate
- Collagen based matrices
- Demineralized bone matrix
- Hydroxyapatite
- Tricalcium phosphate
- Osteoinductive proteins
Bone Graft Substitutes

- Resorption rates vary widely
 - Dependant on composition
 - Calcium sulfate - very rapid
 - Hydroxyapatite (HA) – very, very slow
 - Some products may be combined to optimize resorption rate
 - Also dependant on porosity, geometry
Bone Graft Substitutes

• Mechanical properties vary widely
 – Dependant on composition
 • Calcium phosphate cement has highest compressive strength
 • Cancellous bone compressive strength is relatively low
 • Many substitutes have compressive strengths similar to cancellous bone
 • All designed to be used with internal fixation
Calcium Phosphate

- Injectable pastes of calcium and phosphate
 - Norian SRS (Synthes/Stratec)
 - Alpha BSM (Etex/Depuy)
 - Callos Bone Void Filler (Skeletal Kinetics)
Calcium Phosphate

- Injectable
- Very high compressive strength once hardens
- Some studies of its use have allowed earlier weightbearing and range of motion
Calcium Sulfate

- Osteoconductive void filler
- Low compressive strength – no structural support
- Rapidly resorbs
- May be used as a autogenous graft extender
 - Available from numerous companies
 - Osteoset, Calceon 6, Bone Blast, etc.
Calcium Sulfate

- Pellets
 - Pellet injectors
- Bead kits
 - Allows addition of antibiotics
- Injectable
 - May be used to augment screw purchase
Collagen Based Matrices

• Highly purified Type 1 bovine dermal fibrillar collagen
• Bone marrow is added to provide bone forming cells

• Collagraft (Zimmer)
 – Collagen / HA / Tricalcium phosphate
• Healos (Depuy)
 – Collagen / HA
Deminerlized Bone Matrix

- Prepared from cadaveric human bone
- Acid extraction of bone leaving
 - Collagen
 - Noncollagenous proteins
 - Bone growth factors
 - BMP quantity extremely low and variable
- Sterilized which may decrease the availability of BMP
Demineralized Bone Matrix

- Available from multiple vendors in multiple preparations
 - Gel
 - Putty
 - Strip
 - Combination products with cancellous bone and other bone graft substitute products
Deminingeralized Bone Matrix

- Growth factor activity varies between tissue banks and between batches.
- While they may offer some osteoinductive potential because of available growth factors, they mainly act as an osteoconductive agents.

Hydroxyapatite

- Produced from marine coral exoskeletons that are hydrothermically converted to hydroxyapatite, the natural mineral composition of bone
- Interconnected porous structure closely resembles the porosity of human cancellous bone

Cancellous Bone
Coralline hydroxyapatite
Hydroxyapatite

- Marketed as ProOsteon by Interpore Cross
- Available in various size blocks & granules
- ProOsteon 500
 - Very slow resorption
- ProOsteon 500 R
 - Only a thin layer of HA
 - Faster resorption
Tricalcium Phosphate

• Wet compressive strength slightly less than cancellous bone
• Available as blocks, wedges, and granules
• Numerous tradenames
 – Vitoss (Orthovita)
 – ChronOS (Synthes)
 – Conduit (DePuy)
 – Cellplex TCP (Wright Medical)
 – Various Therics (Therics)
Bone Morphogenetic Proteins

• Produced by recombinant technology
• Two most extensively studied and commercially available
 – BMP-2 (Infuse) Medtronic
 – BMP-7 (OP-1) Stryker Biotech
BMP-2 for Open Tibial Fractures

- Prospective, randomized study
- 450 patients

All received IM nail (vast majority with UNREAMED technique) and appropriate soft tissue management

- Randomized to 3 treatments at time of definitive wound closure
 - Placebo
 - 0.75 mg/ml BMP-2/ACS
 - 1.50 mg/ml BMP-2/ACS

Results

- 44% reduction in risk of nonunion/delayed union with high dose BMP-2
- Significantly faster fracture healing
- Significantly fewer
 - invasive interventions
 - hardware failures
 - infections

Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
 - 27 y.o male with lateral split/depression tibial plateau fracture. Note posterolateral depression.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
 - ORIF with allograft cancellous bone chips to fill defect and support depressed area
 - Alternatively could use any osteoconductive substitute with similar compressive strength
Indications for Bone Graft

• Provide mechanical support
 – Metaphyseal impaction
 – 4 months s/p surgery and the graft is well incorporated.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
 - 29 y.o male with defect s/p IMN Type IIIB open tibia fracture. Gentamicin PMMA beads were used as spacers and removed.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
 - s/p bone grafting with iliac crest autograft.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
 - 14 months after injury, the fracture is healed and the nail removed.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
- Stimulate healing
 - Atrophic and Oligotrophic Nonunions
 - 26 y.o. woman with established atrophic nonunion of the clavicle.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
- Stimulate healing
 - Atrophic and Oligotrophic Nonunions
 - Plating with cancellous iliac crest autograft.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
- Stimulate healing
 - Atrophic and Oligotrophic Nonunions

- 6 months after surgery, she is healed and asymptomatic.
Indications for Bone Graft

• Provide mechanical support
 – Metaphyseal impaction
• Replace bone
 – Cortical or segmental defect
• Stimulate healing
 – Nonunions
 – Arthrodesis
 – Failed subtalar arthrodesis
Indications for Bone Graft

• Provide mechanical support
 – Metaphyseal impaction
• Replace bone
 – Cortical or segmental defect
• Stimulate healing
 – Nonunions
 – Arthrodesis
 – Repeat fusion with autogenous iliac crest.
Indications for Bone Graft

- Provide mechanical support
 - Metaphyseal impaction
- Replace bone
 - Cortical or segmental defect
- Stimulate healing
 - Nonunions
 - Arthrodesis

 - 6 months after surgery, fused successfully
Thank You

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org