OTA Speciality Day 2018- New Orleans Subtle Syndesmotic Injuries: How I diagnose them and How to Fix

Kenneth A Egol MD

- 1. Due to their inherent instability, it is well established that syndesmotic fixation should be performed as part of standard care for rotational ankle fractures when indicated.
- 2. Evidence that this pattern of injury is associated with more pain and poorer function at one year compared to operative fractures without an associated syndesmotic injury
- 3. In many cases, the presence of syndesmotic disruption is identified pre-operatively and may be planned for.
 - a. Obvious widening
 - b. fracture pattern
 - c. dislocation
- 4. In other cases, intraoperative decision to proceed with syndesmotic stabilization is usually confirmed based on
 - a. Preop MRI
 - b. a fluoroscopic syndesmotic stress views, following malleolar fracture stabilization
- 5. The current standard of care for intraoperative assessment of the syndesmotic articulation is performed utilizing intraoperative two-dimensional (2D) fluoroscopy
 - a. Syndesmosis malreduction rate of up to 16%
- 6. A number of CT based measurement methods have been proposed at the level of the syndesmosis to evaluate the articulation and possible malreduction (Gardner, Marmor, Davidovitch)
- 7. Open Reduction with Direct visualization now favored by many
 - a. Fixation with screws or suture
 - b. Controversy still exists

REFERENCES

- 1. Mukhopadhyay, S., et al., *Malreduction of syndesmosis-Are we considering the anatomical variation?* Injury, 2011.
- 2. Zalavras, C. and D. Thordarson, *Ankle syndesmotic injury*. The Journal of the American Academy of Orthopaedic Surgeons, 2007. **15**(6): p. 330-9.
- 3. Egol, K.A., et al., *Outcome after unstable ankle fracture: effect of syndesmotic stabilization*. Journal of orthopaedic trauma, 2010. **24**(1): p. 7-11
- 4. Hovis, W.D., et al., *Treatment of syndesmotic disruptions of the ankle with bioabsorbable screw fixation.* The Journal of bone and joint surgery. American volume, 2002. **84-A**(1): p. 26-31.
- 5. Weening, B. and M. Bhandari, *Predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures.* Journal of orthopaedic trauma, 2005. **19**(2): p. 102-8.
- 6. Chissell, H.R. and J. Jones, *The influence of a diastasis screw on the outcome of Weber type-C ankle fractures.* The Journal of bone and joint surgery. British volume, 1995. **77**(3): p. 435-8.
- 7. Elgafy, H., et al., *Computed tomography of normal distal tibiofibular syndesmosis.* Skeletal radiology, 2010. **39**(6): p. 559-64.
- 8. Marmor, M., et al., Limitations of standard fluoroscopy in detecting rotational malreduction of the syndesmosis in an ankle fracture model. Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society, 2011. 32(6): p. 616-22.
- 9. Gardner, M.J., et al., *Malreduction of the tibiofibular syndesmosis in ankle fractures.*Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society, 2006. **27**(10): p. 788-92.

Syndesmosis II: Reduction tips (clamp orientation and force)

David E. Asprinio M.D. 3/10/2018

Syndesmotic reduction

- Possible displacements
 - Coronal plane translation
 - Axial plane rotation
 - Sagittal plane translation (A-P)
 - Axial plane translation (M-L)
- · Reduction modalities
 - Open versus closed
 - Direct ligament repair (via fracture reduction)
 - Clamp versus manual
- · Clinical considerations
 - Clamp type
 - Clamp orientation
 - Force

The importance of fibular clamp position on syndesmotic reduction

Hak & Judkins OTA 2011

- Hypothesized anterior and posterior clamp placement on fibula would malrotate the fibula
- 20 fresh frozen cadaver
- · Medial pointed tenaculum mid tibia
- Lateral -
 - Mid axis fibula
 - 5 mm anterior to mid axis
 - 5 mm posterior to mid axis
- Posterior placement resulted in external rotation

latrogenic syndesmosis malreduction via clamp and screw placement

Miller et al JOT 2012

- 14 cadaveric specimen
 - All ligaments disrupted
 - Clamp placement at 0°, 15°, and 30°
 - Results
 - 15° and 30°
 - fibula external rotation
 - over compression
 - Screw placement also significant

Forceps reduction of the syndesmosis in rotational ankle fractures: A cadaveric study

Phisitkul et al JBJS 2012

- 10 cadaveric specimen
- CT evaluation following serial destabilization and clamp placement at various angles
 - Lateral (A, B, C)
 - 5mm anterior, at and 5mm posterior to lateral malleolar ridge
 - Medial (C, A, B)
 - 10mm posterior, 10mm anterior, and at mid medial surface

1cm above plafond

Forceps reduction of the syndesmosis in rotational ankle fractures: A cadaveric study

Phisitkul et al JBJS 2012

 Described reproducible method to assess sagittal plane displacement and medialization of fibula

Forceps reduction of the syndesmosis in rotational ankle fractures: A cadaveric study

- Both obliquely oriented clamp placement consistently cause fibula medial displacement in the sagittal plane
- Clamp placement in the neutral anatomic axis most accurately reduced syndesmosis albeit with slight over compression

Phisitkul et al JBJS 2012

Simulating clamp placement across the trans-syndesmotic angle of the ankle to minimize malreduction: A radiological study

Sara M. Putnam^{a,1}, Michael S. Linn^{b,1}, Amanda Spraggs-Hughes^{a,1}, Christopher M. McAndrew^a, William M. Ricci^a, Michael J. Gardner^a

Injury 2017

- Axis distal tibia and fibula joint identified on CT uninjured ankle
- · Optimal clamp tine positioning presumed perpendicular to joint axis Trans-syndesmotic angle (TSA)
- Medial tine position identified on three-dimensional reconstruction Typically anterior third on lateral projection

Medial clamp tine position may affect reduction accuracy during syndesmotic reduction

Cosgrove et al JOT 2017

- · Prospective cohort 72 patients (3 surgeons)
- · Obtained:
 - #1 Fluoroscopic talar dome lateral projection documenting tine position
 - #2 Postoperative CT scan

Medial clamp tine position may affect reduction accuracy during syndesmotic reduction

Cosgrove et al JOT 2017

- Tine placement (fluoroscopic image)
 - Anterior third 18 (33.3%)
 - Central third 31 (57.4%)
 - Posterior third 5 (9.3%)
- Malreduction >2 mm (CT scan)
- Measurement a
- 0% anterior third
- 19.4% middle third
- 60% posterior third
- Measurement b
 - 11.1% anterior third
 - 16.1% middle third
 - 60% posterior third

Measurement c 11.1% anterior third

12.9 % middle third 0% posterior third

Increased Reduction Clamp Force Associated With Syndesmotic Overcompression

- · Purpose to quantify and evaluate the effect of clamp force on oblique coronal plane fibula reduction
- · 21 prospectively identified patients
 - 9 Weber B
 - 12 Weber C
- Reduction achieved using modified periarticular reduction forceps with load cell

Haynes et al Foot Ankle Int. 2016

Increased Reduction Clamp Force Associated With Syndesmotic Overcompression

- · Reduction maintained with 1 or 2 3.5 mm transsyndesmotic quadricortical position screws
- Clamp reduction force recorded (surgeon blinded to result)
- · CT scan obtained postoperatively
 - Overcompression >1 mm fibula medialization
 - Under compression >1mm fibula lateralization

Haynes et al Foot Ankle Int. 2016

Increased Reduction Clamp Force Associated With Syndesmotic Overcompression

- · Clamp force was highly variable between surgeons
- Although compression force was different between groups there was significant overlap
- Additional limitation: Utilized single type of reduction clamp

Haynes et al Foot Ankle Int. 2016

Impact of clamp placement on reduction of the ankle syndesmosis

Bunch et al ORS 2015

- Purpose to assess the effect of clamp placement with respect to orientation and location above the plafond
- · 13 fresh frozen human cadaver
- · Deltoid ligaments and syndesmosis divided
- Clamps placed at neutral and 30° in coronal plane at 1, 2, 3, 4, and 5 cm proximal to plafond

Impact of clamp placement on reduction of the ankle syndesmosis

Bunch et al ORS 2015

- Coronal axis clamp placement significantly displaced fibula posteriorly at all levels
- Coronal axis clamp placement significantly displaced fibula laterally as a group

Incisura Morphology as a Risk Factor for Syndesmotic Malreduction

Cherney et al Foot Ankle Int. 2016

- 35 prospectively enrolled patients
- Postoperative CT to assess incisura depth and syndesmotic reduction
- · Contralateral (normal) control
- "Shallow" (≤ 2.5 mm)
- "Non deep" (2.6-4.4 mm)
- "Deep" (≥ 4.5 mm)

Incisura Morphology as a Risk Factor for Syndesmotic Malreduction

Cherney et al Foot Ankle Int. 2016

- "Shallow" (≤ 2.5 mm)
 - 6/8 anteriorly malreduced (p < 0.001)
- "Non deep" (2.6-4.4 mm)

- "Deep" (≥ 4.5 mm)
 - -5/9 posteriorly malreduced (p < 0.02)
 - Malrotation more likely

Comparison of clamp reduction and manual reduction of syndesmosis and rotational ankle fractures: A prospective randomized trial

Park et al, J Foot Ankle Surg 2017

- Prospective randomized
- 85 acute rotational fractures with syndesmotic injury
- Forceps versus manual reduction
- Postop assessment
 - Tibiofibular clear space
 - Tibiofibular overlap
- Medial clear spaceAnkle ROM
- VAS
- Olerud-Molander score
- Complications

(p < 0.5)

(p > 0.5)

Intraoperative radiographic evaluation

- Fluoroscopy/plain film radiographs
 - Tibiofibular clear space
 - Tibiofibular overlap
 - Medial clear space

 - Talar tilt angle
 Talocrural angle
 Trilateral intervals
 Shenton's line
 Dime sign
 Talar dome lateral

 - Talar dome lateral
- · 3-D fluoroscopy
- Intraoperative CT scan

Take home:

- Consistent anatomic reduction of the distal tibiofibular joint remains elusive
- · Keys to success
 - Understanding planes of deformity
 - Anatomic fracture reduction (esp. fibula and posterior malleolus)
 - Open visualization of joint
 - Judicious use of reduction clamps
 - Proper clamp orientation and force application
 - Understanding incisura morphology
 - Fastidious radiographic evaluation

Specialty Day

New Orleans, LA March 10, 2018

ANKLE FRACTURE CONTROVERIES: HARWARE REMOVAL - IF AND WHEN?

Eric D. Farrell, M.D.

Assistant Professor, Orthopaedic Surgery UCLA School of Medicine

I. INTRODUCTION

- REMOVAL OF HARDWARE (ROH)— ONE MOST COMMON SURGICAL PROCEDURES -\$\$\$
- CONTROVERSY IN THE LITERATURE RE: RISKS AND BENEFITS
- CONTROVERST IN THE LITERATURE ON "WHEN"
- THERE IS LITERATURE TO SUPPORT MANY DIFFERENT TREATMENT PLANS
- CONLCUSION OF MOST STUDIES "FURTHER INVESTIGATION/STUDY INTOIS NEEDED"

II. RISKS

- IT'S A SURGICAL PROCEDURE......
- BAD THINGS CAN HAPPEN IN THE HOSPITAL
- INFECTION
- NEUROVASCULAR INJURY
- REFRACTURE/LOSS REDUCTION
- OPPORTUNITY COST
- COMPLICATION RATE OF 22.4% REPORTED FOLLOWING REMOVAL SYNDESMOTIC SCREWS (SCHEPERS ET AL., 2011)

III. INFECTION

- POST OP WOUND INFECTION (POWI) IS NOT INSIGNIFICANT
- RATE AS HIGH AS 11.6% (BACKES ET AL. 2015)
- POWI FOLLOWING REMOVAL SYNDESMOTIC SCREW = 9.2% (SCHEPERS ET AL, 2011)

IV. SYNDESMOTIC SCREW REMOVAL

- LITERATURE BROAD
- LOSS OF REDUCTION IF SCREWS REMOVED TO EARLY (PRIOR TO HEALING)
- LITERATURE TO SUPPORT MINIMUM OF 3 MONTHS BEFORE ROH
- BROKEN SCREW(S) MAY NOT NECESSITATE ROH STUDIES -> PATIENTS SHOW IMPROVED FUCNTION WITH BROKEN, LOOSENED OR REMOVED SCREWS (MANJOO ET AL. 2010)
- RECENT LITERATURE TO SUPPORT REMOVAL AT 3 MONTHS IMPROVED SUBJECTIVE AND OBJECTIVE FUNCTION (MILLER ET AL, 2010)

V. LATERAL PLATE REMOVAL

- NOT DIFFERENCE IN SYMPTOMATIC HARWARE BETWEEN LATERAL AND POSTERIOR PLATING
- RECENT STUDY SUGGESTS INCREASE RATE OF REMOVAL OF CONTOURED LOCKED FIBULAR PLATES VS STANDARD 1/3 TUBULAR PLATE (MOSS ET AL, SCIENTIFIC POSTER 2016 OTA)
- LITERATURE TO SUPPORT IMPROVED SYMPTOMS/FUNCTION S/P REMOVAL OF SYMPTOMATIC LATERAL PLATES
- FRATURES MUST BE HEALED BEFORE ROH

VI. REMOVAL OF IMPLANTS IN SETTING OF INFECTION

- LITERATURE (FEW ARTICLES) TO SUPPORT MAITENANCE OF IMPLANTS/SUPRESSION OF INFECTION UNTIL UNION IS ACHIEVED (WHEN POSSIBLE)
- MULTI-SPECIALTY APPROACH (PLASTIC SURGERY, ID, MEDICINE, ETC)
- MORE STUDY IS NEEDED
- (OVASKA ET AL.: INJURY, 2013), (P BONNEVIALLE: ORTHOPAEDICS AND TRAUMATOLOGY: SURGERY AND RESEARCH, 2017), (BERKES ET AL.: JBJS, 2010)

VII. CONCLUSIONS

- LITERATURE CAN BE HIGHLY VARIABLE REGARDING SOME ASPECTS OF ROH
- FURTHER RESEARCH- PROSPECTIVE RANDOMIZED STUDIES BENEFICIAL
- PREMATURE ROH INCREASES RISK FOR FAILURE/COMPLICATION
- ROH IS NOT WITHOUT RISK PHSYCIANS KNOW THEIR PATIENTS BEST -> WEIGH BENEFITS VS
 POTENTIAL COMPLICATIONS
- BROKEN SYNDESMOTIC SCREWS MAY NOT HAVE TO BE REMOVED
- SYMPTOMATIC IMPLANTS MAY IMPROVE FUNCTON/SX (HOWEVER YOU CAN'T GUARANTEE.)
- DON'T DISCOUNT THE PHYSCOLOGICAL EFFECT (MUST WEIGH AGAINST RISKS)
- BE PREPARED FOR UNEXPECTED INTRA-OP FINDINGS (NONUNION/LOSS OF REDUCTION) AND HAVE A
 PLAN.