Bone Graft Substitutes: Is Anything as Effective as Autograft?

Kenneth A. Egol, MD

Disclosures

Kenneth A Egol, MD

• Research Support:
 • Synthes

• Consultant:
 • Exactech

Goals and Objectives

• Describe scope of issue

• Discuss the physiology of fracture healing

• Examine the various properties of bone grafts and bone graft substitutes
It All Depends

Background

- Nonunion estimated in 5-10% of all fractures (Calori, Injury, 2011)
- Significant economic burden
- $23,000 to $58,000 (Kanakaris, Injury 2007)

Fracture Healing

- Fundamental Prerequisites:
 - Mechanical Stability
 - Adequate reduction and fixation
 - Favorable Environment
 - Blood supply to fracture site
 - Sequential activation of cell type and bioactive molecules
Bone Grafting

- 2.2 million bone grafting procedures/year
 (Calori, Injury, 2011)
- Autologous bone graft/bone marrow aspirate
- Allograft
- Synthetic bone graft
Cancellous Autograft

- Iliac Crest Bone Graft
 - Gold standard
 - Corticocancellous
 - Osteoconductive, osteoinductive, osteogenic

- Hernigou et al: IC rich in colony forming cells; number of cells directly correlates with healing

Materials and Methods

Quantitative Assessment of the Bone Morphogenetic Protein Expression From Harvested Bone Graft

Image: Kenneth A. Egol, MD

Hospital for Joint Diseases ● Department of Orthopaedic Surgery
Materials and Methods

- RNA isolated
- Microarray analysis of three bone harvest graft sites
- RT-PCR analysis of BMP and antagonist expression

Results

<table>
<thead>
<tr>
<th>Gene of Interest</th>
<th>BMP-2</th>
<th>BMP-3</th>
<th>BMP-4</th>
<th>BMP-5</th>
<th>BMP-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILAC 10</td>
<td>4.2</td>
<td>3.0</td>
<td>6.4</td>
<td>3.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Not Available</td>
<td>3.7</td>
<td>3.6</td>
<td>3.6</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>BMAR 2</td>
<td>4.6</td>
<td>3.6</td>
<td>6.4</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Not Available</td>
<td>3.7</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>BMAR 3</td>
<td>4.8</td>
<td>3.6</td>
<td>6.4</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Not Available</td>
<td>3.7</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>BMAR 4</td>
<td>7.4</td>
<td>5.4</td>
<td>9.3</td>
<td>7.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Not Available</td>
<td>6.2</td>
<td>5.1</td>
<td>6.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>BMAR 5</td>
<td>8.6</td>
<td>6.4</td>
<td>10.9</td>
<td>8.4</td>
<td>7.3</td>
</tr>
<tr>
<td>Not Available</td>
<td>7.5</td>
<td>5.9</td>
<td>7.5</td>
<td>6.3</td>
<td>6.0</td>
</tr>
<tr>
<td>BMAR 10</td>
<td>10.0</td>
<td>8.0</td>
<td>15.0</td>
<td>11.0</td>
<td>10.3</td>
</tr>
<tr>
<td>Not Available</td>
<td>9.3</td>
<td>7.4</td>
<td>9.3</td>
<td>7.4</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Summary

- Genetic expression of BMP-2 and BMP-5 was found to be 33% higher than other BMP types at IC
- BMPr2 and BMPr1A (BMP receptors) were also upregulated 2 and 5 times respectively in the iliac crest compared to the tibia and humerus
- The genetic expression of the other BMPs were equivalent in the three potential bone graft harvest sites
- Connexin 43, FGF-6, PDGF demonstrated increased expression compared to tibia and humerus
Cancellous Autograft

• Cons
 • Donor site morbidity
 • Newer techniques have better outcomes
 • Increased operating time, hospital stay
 • Can’t use in some patients
 • Inadequate volume (osteoporosis)
 • Compromised bone (recent harvest or fracture)

Bone Graft Substitutes

Bone Bank Allograft

• Pros
 • Large experience
 • Readily available
 • Many forms: freeze dried, fresh frozen, demineralized
 • Greater supply than demand

Bone bank allograft
• DBM
• Coraline hydroxyapatite
• Calcium phosphate
• Calcium Sulfate
• Collagraft (collagen graft)
• BMP2, BMP7

Bone Bank Allograft

• Pros
 • Large experience
 • Readily available
 • Many forms: freeze dried, fresh frozen, demineralized
 • Greater supply than demand
Bone Bank Allograft

- **Cons**
 - Disease transmission
 - Procurement costs
 - Rejection (*contain marrow and vascular components*)
 - Inconsistent incorporation
 - Late resorption
 - Processing affects strength and incorporation

Demineralized Bone Matrix

- Demineralized bone matrix
- Urist (1965) placed DBM in muscle pouch of rat \(\Rightarrow\) new bone formation
- BMPs extracted
- Osteoconductive, weakly osteoinductive

Demineralized Bone Matrix

- A number of commercial preparations of DBM
 - AlloFuse, Intergro, Optefil, Opteform, Optecure, Grafton, Viagraft, etc.
- Prepared from allograft
- Poor handling
- No structure
- Osteoconductive
- Weakly osteoinductive
Synthetic Bone Graft

• Bone graft use in US increasing
• Shortage of bone graft donors
• Increasing need for synthetic bone graft substitutes

Synthetic Osteoconductive Material

Hydroxyapatite
• Porous structure similar to cancellous bone
• Effective osteoconductive matrix
• Mineralization and remodeling → mature bone

Coralline hydroxyapatite
• South Sea coral skeletons converted to pure, crystalline HA
• Good compressive, low tensile strength
• Limited remodeling potential

Both lack osteogenic and osteoinductive properties

Image: Biostructures.net
Synthetic Osteoconductive Material

CaPO₄ and CaSO₄ Cement
- Primarily osteoconductive
- Useful in filling metaphyseal bone gaps
- Compressive strength 15-55 mp
- Weakness in torsion and shear
- Extrusion into soft tissue?
- CaSO₄ resorption >> CaPO₄
- Association w/ serious wound drainage
- $400 - $2,000 per 5ml

Collagraft (collagen graft)
- Osteoconductive bone matrix
- Porous beads
 - 60% hydroxyapatite
 - 40% tricalcium phosphate + fibrillar cartilage
- Autograft expander when combined with BMA
- Poor mechanical characteristics

Osteoinductive Proteins

Bone Morphogenetic Proteins
- Wozney et. al 1988 identified genetic sequence of BMPs
- Cheng et. al 2003, characterized 14 types of human BMPs
 - TGF-β superfamily
 - Commits stem cells to osteoprogenitors
 - Produce H.O.
 - Actively expressed in fracture callus
 - BMP-2 and BMP-7 successful in human trials
Recombinant Human (rh)BMP-2
(Infuse)

rhBMP-2 Animal Studies

- BMP-2 knockout mice show a propensity to develop non-healing extremity fractures
- BMP-2 injected into rats induces new bone growth within 14 days
- Wang et al. (PNAS) suggests BMP-2 is required for initiation of fracture healing

- Einhorn et al. (JBJS) has shown that injection of rhBMP-2 accelerated healing of femoral fractures in rats
- Histological analysis showed rhBMP-2 induced mice had a larger, more vascular fracture callus
rhBMP-2 (Infuse)

Recombinant Human (rh)BMP-7 (OP-1)

- Osteogenic
- Peaks later in fracture healing than BMP-2
- Strong extracellular antagonists: noggin, chordin, follistatin, DRM/gremlin, sclerostatin
rhBMP-7: Initial Animal Trials

- Makino et al. (JOR) was one of the first to show benefit for rhBMP-7 in nonunions
- At 6 weeks, all of control animals had nonunion while all of the treated rats had healed

rhBMP-7: Clinical Trials

- Friedlander et al. (JBJS) looked at 124 patients with tibial nonunions
- Prospective, randomized – rhBMP-7 vs. ICBG
- No difference in outcomes, increased pain with ICBG

rhBMP-7 Clinical Trials

Small studies initially showed benefit in pelvis and humerus fractures
- Higher powered studies have failed to reproduce results

Recent studies have evaluated combination of autograft + rhBMP-7 in fracture healing
- Giannoudis et al. showed a 100% union rate in a small (n=45) 2009 study
- Fewer complications

Upper extremity trials have been less promising
Potential Complications of BMPs

- Small risk of:
 - Immune reaction
 - Ectopic bone formation
- Little data on adverse events for off-label uses
- Long term complications unknown
- Spine surgery: unpublished industry data suggests increased adverse events (Yale YODA Project, 2013)

Cost effectiveness of BMP products

- Limited evidence
- 2010 Cochrane review suggests:
 - BMPs unlikely cost effective in spinal fusion
 - BMPs may be cost effective in acute, open tibial fractures if used in severe cases
 - BMPs unlikely cost effective for tibial non-union as a primary treatment
- However, costs likely to come down
 - Engineering improvements
 - Financial incentives for shorter hospital stays
Is Anything Better Than Autograft?

• Only clinically available graft source that is osteogenic, osteoinductive and osteoconductive

• No sound evidence that any alternative is more effective, or more cost effective, in stimulating bone formation (MK SEN, Injury, 2007)

• Bone graft substitute development driven by ICBG limitations, not increased effectiveness

Summary

• Autogenous Bone graft remains gold standard

• Crest is still best

• Basic science strategies have focused on BMP’s

• As a bone void filler- osteoconductive materials seem OK

Thank You