Periprosthetic Fractures

J Kellam, M.D.
OTA Advanced Residents Course
Dallas, TX January 20, 2017

Take Away Messages

• Assessment – Classification
 • Fracture and implant and bone

• Treatment options
 • Complete bone, stability
 • Technical tricks
 • Screws, struts, cerclage, nails

• Results
 • Heal but patient outcome poor
The Problem(s)

- Elderly, increasing number
- Poor bone quality
- Prosthesis blocks fixation possibilities
- No endosteal blood supply if cemented stem
- High stress adjacent to prosthetic stems
- Many fixation techniques - inadequate

Whose job is it?

Both Skill sets needed
Fracture needs fracture surgeon
Revision needs joint surgeon
Assessment

- **Patient:**
 - Health – comorbidities: stable or active
 - Acute status – low energy vs. high energy: trauma evaluation, medical assessment
 - Function – what can they do

- **Limb:**
 - Vascular – acute, chronic
 - Neurological
 - Skin
 - Prior incisions
Assessment

• Fracture:
 • Location
 • Morphology – simple or multi fragmentary
 • Closed vs. open

• Prosthesis – Bone Interface
 • Loose – history, x-rays, CT Scan, OR
 • Bone quality – cortical thickness, erosions
 • Type – cemented vs. non cemented
 • Facing implant condition

Assessment

• Your System
 • Fragility fracture patient
 • Prompt operative care
 • Bone health
 • Acute
 • Discharge
 • Follow-up
Diagnosis - Classification

• Consolidates the 3 most important factors
 • Site of the fracture
 • Stability of the implant
 • Quality of the surrounding bone

Vancouver Classification

Duncan CP, Masri BA. Instr Course Lect 1995; 293-204
Vancouver Classification System

- Type A: Trochanteric
- Type B: Shaft Fracture around stem
 - B1: implant stable
 - B2: implant unstable
 - B3: implant unstable / bone deficiency
- Type C: Shaft Fracture below component
 - C1: implant stable
 - C2: implant unstable
 - C3: implant unstable / bone deficiency

But what about these?
Universal Classification

The location of the fracture (involves the bone supporting the prosthesis)

- Type A: Apophyseal
- Type B: Bed of the implant
- Type C: Clear of the implant
- Type D: Dividing the bone between two implants
- Type E: Each of two bones supporting one arthroplasty
- Type F: Facing and articulating with a hemiarthroplasty implant or is distant to it

The fixation interface of the implant to bone

The adequacy of the bone stock and bone strength supporting the implant

![Bone cross sections showing different bone quality](image)
Universal Classification

• Fracture classified by AO/OTA (Müller) system

• Joints coded as:
 • I = shoulder
 • II = elbow
 • III = wrist
 • IV = hip
 • V = knee
 • VI = ankle

Universal Classification

• Code
 • Joint, AO/OTA code, UCS Type, Bed of implant
But what about these?

- Knee – V
- Femur – 3
- Distal end segment femur - 33
- Simple Transverse 33-A3
- Fracture location: B
- Well fixed, good bone quality – B1
- V33A3(B1)

But what about these?

- Knee – V
- Tibia – 4
- Proximal end segment femur - 41
- Simple Oblique 41-A3
- Fracture location: tip of implant B
- Loose?, good bone quality – B2
- V41A3(B2)
But what about these?

- Shoulder – 1
- Humerus – 1
- Shaft- 12
- Spiral wedge 12B1
- Fracture location: C
- Well fixed, good bone quality – B1
- I12B1C(B1)

Management
74 yr. old male in MVC

Well fixed, good bone stock, segmental IV32C2B1 and IV33A3CB1

Prosthesis Stability

• Determination
 • Clinical
 • Pain – pre fracture, start up
 • Infection history
 • Type of implant
 • Radiological
 • Prosthesis alignment and changes
 • Subsidence – lack of bone ingrowth or loose prosthesis
 • Osteolysis – bone quality - CT scan
Prosthesis Stability

• Intraoperative
 • Hip
 • Lindahl showed 47% of “stable” prosthesis were loose
 • Recommended surgical exploration of all cases and be prepared to revise
 • With good bone quality, may consider fixation and revise later if needed
 • Knee
 • CT maybe helpful
 • Very low fractures generally have no bone
 • Intraoperative
 • Others

Principles: Internal Fixation

• Maintain fracture environment that optimizes fracture healing
 • Indirect reduction
 • Atraumatic surgical techniques - MIPO

• Splint the entire bone (longer working length)
 • Functions as bridge plate
 • Protects osteoporotic bone

• Screws when possible rather than cables
 • Bicortical if possible
Biomechanics of Screw Fixation
Fulkerson E, Egol K, et al. J of Trauma 60(4); 830 – 835, 2006

Principles

- Fracture environment to optimizes fracture healing
 - Mechanical environment
 - Relative stability – fragmentation
 - Minimum plates -10 hole for simple, 14 hole for fragmented
 - Anatomical approximation – simple fracture
 - Interfragmental compression is hard to achieve in osteoporotic bone
 - Allograft strut enhance poor cortex and improve mechanical stability
 - Fractures at tip of prosthesis
Allograft Struts

• 1/2 length of femur, 2 dia. of femur on each side
• Anterior surface
• Must be contoured to fit
• Held with cerclage to plate
• Consider allograft and DMB at ends

Hartsock, JAAOS Jan 2014

Locked Plates

Bicortical Fixed Angled Locking Plates

Unicortical Fixed Angled Locking Plates

Variable Angled Multi holed Locking Plates
Plate Constructs - Mechanics

• Tested metal plate laterally with bicortical screw fixation distally and proximally
• Cerclage with cables thru plate X 4
• Screws unicortical x 4
• Stable fracture versus unstable fracture pattern

• Screws better than cerclage < stiffness especially with unstable fracture pattern

Lever, J. J of Ortho Surgery and Research 5: 45, 2010

Enhance Stability

Cerclage

• through or attached to plate
• must have screw fixation with it

Variable angled screws with plate attachment
Principles

• Enhance the fracture environment that optimizes fracture healing
 Biological
 - Bone grafting — autogenous or allograft or both
 - Bone graft substitutes — DMX
 - BMP

Biomechanics

• Torsional capacity ↓ 55-65% of intact femur for all plates and nails (effect of a screw hole)
• Axially loading
 • Plate: similar load bearing capacity to intact with over lap plate and IDD>10cm
 • Nail: IDD no effect if AP screws used — as close as need be
 • Lateral- medial screws ↓ load capacity by 22%

Piendl, Mazurek et al, OTA 2003
74 yr. old male in MVC

Options

Management

Limited access thru 3 incisions, LCP, BMP + allograft
Follow-up 15 months

78 yr old male who tripped on a rug

IV32B(B2)

Hip, femur, wedge fracture of shaft, bone stock poor prosthesis stability?
Uncemented Femoral Component

Management: Revision
74 yr. old male in a MVC

- Hip IV
- Femur 3
- Proximal shaft 32
- Multifragmented fracture 32C
- Bone quality good B2
- Implant loose
- IV32CB2

Assess acetabular problems and may need to treat

Revision Principles

- Loose prosthesis + fracture at stem
- Good bone stock (B2)
- Revision of stem with adequate fracture fixation
 - Revision stem bypasses fracture by 2X outer diameter of diaphysis (4 to 6 cm)
 - Fracture fixation – struts, plates, cerclage, allograft
- Non cemented – no cement at fracture site
Revision Principles

- Poor bone stock – PROBLEM (B3)
- Revision of stem + bone stock operation
 - Allograft, struts,
 - Proximal femoral allograft prosthesis composites

Unstable Prosthesis and No Bone Stock

Proximal Femoral Allograft Prosthesis Composite
80% union to shaft
Results: BI Fractures

<table>
<thead>
<tr>
<th></th>
<th>Lindahl</th>
<th>Haddad</th>
<th>Beals</th>
<th>Ricci*</th>
<th>O’Toole</th>
<th>Buttero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>321</td>
<td>40</td>
<td>86</td>
<td>79</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>MIPO</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Locking</td>
<td>no</td>
<td>no</td>
<td>both</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Graft</td>
<td>?</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Strut</td>
<td>yes</td>
<td></td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>13%</td>
<td></td>
<td></td>
<td>17%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>2%</td>
<td>7%</td>
<td>3%</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonunion</td>
<td>33%</td>
<td>2%</td>
<td>13%</td>
<td>0%</td>
<td>5%</td>
<td>8/14 no struts</td>
</tr>
<tr>
<td>Refracture</td>
<td>24%</td>
<td></td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q of Life</td>
<td>poor</td>
<td>52%</td>
<td>27%</td>
<td>70%</td>
<td>worse</td>
<td></td>
</tr>
</tbody>
</table>

Fractures Proximal to Total Knee Replacement
Non Operative vs. Operative

Operative treatment best accomplishes these goals

Classification

- Lewis and Rorabeck (1997)
 - Based on fracture displacement and prosthesis stability

- Unified Classification System
Treatment Goals

- Restore axial alignment
- Stable fixation
 - Consider impaction (shortening up to 2 cm)
 - Plate whole length of bone
- Maintain fracture environment suitable for bony healing
- Return to pre-injury mobility
 - ROM as soon as possible

Treatment Options

- Retrograde intramedullary nail
- Locked plating
- Revision with stemmed prosthesis, allograft, or tumor prosthesis
Retrograde IMN vs ORIF

- Limited literature
- PS vs CR
- Canal diameter considerations
- TKA Notch vs canal diameter & alignment
- Femoral stem above?

Retrograde Nailing

- Is the notch open or closed?
 - Post cruciate sparing

- If open, is it large enough?
 - Narrow notch and closed box seen in posterior stabilized knees
Retrograde Nailing

- Problems:
 - Stability - toggle
 - Alignment

 • Uniplanar interlocking bolts
 • Bone quality
 • Capacious distal metaphysis
 • Distal fracture patterns
 • Malalignment

Clinical Evidence?

<table>
<thead>
<tr>
<th>LISS</th>
<th>Retrograde Nail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markmiller M, CORR, 2004</td>
<td>Jabczenski FF, J. Arthroplasty, 1995</td>
</tr>
<tr>
<td></td>
<td>Bezwada HP, J. Arthroplasty, 2004</td>
</tr>
</tbody>
</table>
73 year old female

POST OP 12 WEEKS
48 yr male, MVC,

83 yr. old female with 3 stable comorbidities
Allograft-Prosthetic Composite

Constrained Rotating Hinge
Constraint comes at a price!

Take Away Messages

• Assessment – Classification
 • Fracture and implant and bone

• Treatment options
 • Complete bone, stability

• Results
 • Heal but patient outcome poor

• Technical Tricks
 • Screws, struts, cerclage, nails