Background

“Aviator’s Astragalus”, Anderson 1919 (pilots bracing against rudder controls)

Forced dorsiflexion of foot
- Fall from height
- MVC

Talus: 0.1%-0.85% of all fractures
- 50% are talar neck fractures

Santavirta et al., JOT 1984, 986-989

Vascular Supply

Talus supplied by 3 main arterial branches
- Dorsalis Pedis
- Arteries of tarsal sinus and canal
- Deltoid artery

Mulfinger et al., JBJS Am, 1970, 160-167

Imaging

- AP, lat, obliques of foot and ankle
- Canale view
- CT scan

Canale and Kelly, JBJS Am; 1978, 143-156

Hawkins Classification

Group I
- Nondisplaced vertical fracture of the talar neck

Group II
- Displaced fracture of the talar neck with subluxation or dislocation of the subtalar joint

Group III
- Displaced fracture of the talar neck with dislocation of the body of the talus from both the subtalar and tibiotalar joints
Canale's Modification

Type IV
- Hawkins III with subluxation or dislocation of talar head

Hawkins I

Hawkins II

Hawkins III

Type IV

Biomechanics

Cadaveric study
- 2mm displacement altered contact characteristics of subtalar joint
- Dorsal and varus displacement caused the greatest change

Sangeorzan et al., JOR, 1992, 544-551
Treatment

Type I: Cast immobilization
- Cast immobilization 6-8 weeks
- Surgery?

Type II-IV: ORIF
- Anterolateral and medial incisions

Timing

How urgent are these?
2 studies
- No increase in AVN with delayed fixation
- Urgent to reduce dislocation
 - Talus needs to be under plafond

*Lindvall et al. JBJS 2004 86-A(10); 2229-2234
Vallier et al. JBJS 2004 86-A(8); 1616-1624*

Medial Approach

Easy access to talar neck
Avoid stripping dorsal neck vessels and deltoid (medial malleolus osteotomy)
Less extensile than anterolateral approach
Single incision may result in shortening and varus malunion

Anterolateral Approach

Exposure
- lateral neck
- subtalar joint

2 incisions is gold standard

Murphy, Campbell’s; 1998, ed 9, 1924-1971

Posterolateral Approach

Usually used in conjunction with medial or anterolateral approach
Superior mechanical strength
Disadvantages include subtalar or lateral trochlea violation, FHL insult, and impingement

Trillat et al. Rev Chir Orthop Reparatrice Appar Mot; 1970, 529-536

Böhler Incision

Extensile anterolateral approach
Alternative to 2-incision technique

Herscovici et al., JOT 14(6), 2000, 429-432
Screw Fixation
Solid-core stainless steel
Cannulated
Titanium
 - Allows MRI to assess for AVN
Bioabsorbable
Countersunk or headless lag

Post-op Care
Early ROM
If comminuted or unstable, consider immobilization
NWB until evidence of fracture healing?
Fortin & Balazsy. JAAOS; 2001, 114-127

Results
Canale reported 59% good or excellent in 71 fractures
 - >50% Hawkins II were treated closed
 - Many healed in varus malunion
Low: 18 of 22 good to excellent displaced talar neck fx’s treated with ORIF
Canale, JBJS Am; 1978, 143-156
Low et al, Ann Acad Med Singapore; 1998, 763-766

Hawkins Sign
Seen at 6-8 weeks
Patchy subchondral osteopenia on AP & mortise views
Presence is reliable indicator no AVN
 - Absence is not reliable indicator of AVN
Compare to contralateral side
Hawkins, JBJS Am, 1970, 991-1002

Complications
Fortin & Balazsy. JAAOS; 2001, 114-127

Osteonecrosis
MRI is also helpful but implant must be non-ferromagnetic
MRI not helpful before 3 weeks
MRI is not 100% sensitive
Progress WB status based on fracture healing, not AVN
May take 3 years for revascularization
Thordarson et al, Foot & Ankle Int.; 1996, 742-747
Henderson, RC. JOT; 1991, 96-99
Malunion

Incidence as high as 32%
 - Most common in Hawkins II treated closed
Varus malunion most common
 - 2-incision approach if any medial comminution exists
 - Correction is difficult
Dorsal malunion
 - Leads to impingement
 - Resection of prominence

Hawkins, JBJS Am, 1970, 991-1002

Summary

Non-operative for only non-displaced fractures

ORIF with 2-incision technique if medial comminution exists

Don’t wait for Hawkin’s sign to advance WB status, use fracture healing as a guide

CASES

32 YO M S/P MVC W/ R ANKLE PAIN

Physical Exam

Obvious R ankle deformity
Weakly palpable DP and PT
NL sensation
Motor limited by pain
Case 2 - 27 yo male with ankle injury

- What tests are needed?
- Treatment options?

Case 2 - 27 yo male with ankle injury

- What tests are needed?
- Treatment options?
- If surgery, what approaches are used?
- How do you reduce this injury?
- What fixation?
Case 3 - 52 yo male s/p fall from ladder

- What tests are needed?
- What approaches are used?
- How do you reduce this injury?
- What fixation?

Case 4 – 26 yo in MVC

- How do you classify this fracture?
- What tests are needed?
- What approaches are used?
- How do you reduce this injury?
- What fixation?
Case 5 – 42 yo male with MCA

22 yo MVA

To OR to reduce Joint

Case 5 – 42 yo male with MCA