STEM CELL POPULATIONS IN FRACTURE REPAIR

- Mesenchymal Stem Cells (MSCs)
- Endothelial Progenitor Cells (EPCs)
- Muscle Derived Stem Cells
- Adipose-Derived Stem Cells
- Perivascular Stem Cells

MESENCHYMAL STEM CELLS (MSCs)

- Traditional stem cell population used in fracture repair
- Due to their known ability to differentiate into cartilage and bone *in vitro*
- Universal Definition (International Society for Cellular Therapy)
 - Plastic Adherent
 - Express CD105, CD73, CD90
 - Lack expression CD45, CD34, CD14, CD11b, CD79a, CD19, HLA-DR
 - Differentiate into osteoblasts, adipocytes, chondroblasts
- Multiple preclinical investigations have demonstrated the ability of ex vivo cultured MSCs to accelerate fracture healing\(^1\), and heal bone defects when combined with osteoconductive scaffolds\(^2\) or osteoinductive proteins\(^3\)
- Some authors have reported ineffectiveness when using MSCs to heal bone defects in preclinical models\(^4\)
- There have been several case series reported in the literature of MSC therapy in humans but no comparative studies with AICBG\(^5,6\)

ENDOTHELIAL PROGENITOR CELLS (EPCs)

- Precursor cells which reside in the bone marrow and peripheral blood
- Form vascular networks *in vitro*
- Mobilize and home to areas of tissue ischemia
- Contribute to post natal neovascularization
- Highly effective angiogenesis in animal models of MI, limb ischemia, and stroke
- Accepted Markers:
 - CD133, CD34, VEGFR-2
 - Uptake of AcLDL and Leptin
 - Tube formation on Matrigel
- Multiple authors have demonstrated effectiveness with EPC therapy for healing bone defects in preclinical models\(^7,9\)
Stem Cell Populations for Fracture Healing: Which Ones are Most Useful?
Stem Cell Symposium, Orthopaedic Trauma Association Basic Science Focus Forum 2013

EPCs VERSUS MSCs

• Recent preclinical investigation has demonstrated increased effectiveness of EPC therapy over MSC therapy in a bone defect model10
• Other authors have reported synergistic effects on angiogenesis and osteogenesis when EPCs and MSCs are combined in preclinical models11
• Recent basic science investigation has demonstrated that both AICBG and RIA contain viable populations of MSCs and EPCs12

CONCLUSIONS

• Both MSCs and EPCs have demonstrated effectiveness in preclinical models of fracture healing
• There is emerging evidence to suggest that EPCs may be superior to MSCs, due to their combined effects on osteogenesis and angiogenesis
• The best strategy may be combined administration of both cell populations

REFERENCES