Tibial Shaft Fractures

• Most common long bone fracture
• 492,000 fractures yearly
• Average 7.4 day hospital stay

Broad Range of Injuries

• Low energy:
 – Non-displaced
 – Simple patterns
 – Heal reliably with simple immobilization
High Energy Fx’s
- Open fractures
- Closed soft tissue injuries
- Bony comminution

High Energy Fx’s
- Problems obtaining union
- Tibia is subcutaneous, with a relatively poor blood supply

History & Physical: Low Energy
- Minimal soft-tissue injury
- Less complicated fracture pattern
 - 76.5% closed
 - 53.5% mild soft-tissue energy
History & Physical: High Energy

High incidence of neurovascular injury and open wounds

High suspicion for compartment syndrome

Radiographic Evaluation

- Full length AP and lateral Views
- Include/check joint above & below

Associated Injuries

- 30% of patients will have other injuries
 - Ipsilateral Fibula Fracture
 - Foot & Ankle injury
 - Ligamentous knee injuries
Classification

- By location:
 - Proximal 1/3
 - Middle 1/3
 - Distal 1/3

- By fracture pattern:
 - Transverse, oblique, spiral
 - Butterfly
 - Comminuted

AO/OTA Classification

Hansen Winquist Classification:
Degree of Comminution

- 1: minimal comminution
- 2: <50%
- 3: >50%
- 4: 100% or a segmental fracture
- 5: segmental bone loss
Absolute Operative Indications

- Open fractures
- Vascular injury
- Compartment syndrome

Relative Operative Indications

Floating knee
Intact fibula
Segmental fracture
Severe closed soft tissue injuries
Multiple injuries
Ipsilateral limb injuries
Intra-articular extension
Bilateral tibia fractures

Acceptable Alignment

- Defined as:
 - <1 cm of shortening
 - angulation < 5-7 degrees
 - rotational deformity <10 degrees
- Based on minimal functional outcome data
Rotational Malalignment Tibial IMN’s

- 22 patients/CT scans

- 5/22 (22%) were off by more than 10 degrees
 - 3 were off by >= 15 degrees

Puloski et al JOT 18(7), 2004

Closed Tibia Fractures

Closed Fractures

- “Standard” treatment for “stable” closed tibia fractures:
 - closed reduction
 - long leg casting
 - functional brace at about 3-6 weeks
 - with early weight bearing
Cast bracing indications: “Stable” Fractures

• Closed transverse fractures that can reduced
• Spiral, oblique, or comminuted fractures with < 12 mm of initial shortening

Functional Bracing Relative Contra-Indications

• Intact fibula
 – varus deformity > 5 degrees likely
• Comminuted fractures
 – take longer to heal

Sarmiento JBJS ‘84

• Closed Functional Treatment
 – 1,000 Tibial Fractures
 – 60% Lost to F/U
• Fracture Characteristics
 – All < 1.5 cm shortening
 – None with intact fibula
 – Only 5% more than 8° varus
Sarmiento JBJS ‘84

- Treatment Course
 - Average 3.7 wks in long leg cast
 - Transition to functional fracture brace
 - Early WBAT
 - Stable patterns!

Sarmiento

- Union Rate
 - 98.5%
- Time to Union
 - 18.1 weeks
- Shortening
 - <1.4%
- Initial Shortening = Final Shortening

20 YO Walked into a cement plantar

Unstable Fracture Patterns

- In general “unstable” fractures need operative stabilization
- High-energy fractures:
 - higher incidence of delayed union
- Severe closed soft tissue injury
- Articular surface involvement

Definition: Unstable Fracture Patterns

- 100% displacement of the fracture on the initial film
- >50% comminution of the cortex
- Fibula fracture at the same level as the tibia fracture

IMN vs. Closed Treatment of Isolated, closed, “unstable” fractures

Literature Summary

Treatment with an IMN vs closed rx:
- Shorter time to healing with IMN
- Higher union rate with IMN
- Functional scores, general health status all favor IMN
IMN vs. Closed Treatment of Isolated, closed, “unstable” fractures

Closed treatment:
- Increased disability
- 15% had hindfoot stiffness
- 22% of those initially treated closed had an operative procedure when reduction could not be maintained

IM Nails – Bone et.al.

Retrospective review 99 patients

<table>
<thead>
<tr>
<th></th>
<th>Cast</th>
<th>Nail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to union</td>
<td>26 wks</td>
<td>18 wks</td>
</tr>
<tr>
<td>SF-36</td>
<td>74</td>
<td>85</td>
</tr>
<tr>
<td>Knee score</td>
<td>89</td>
<td>96</td>
</tr>
<tr>
<td>Ankle score</td>
<td>84</td>
<td>97</td>
</tr>
</tbody>
</table>

Bone JBJS ’97

Starting Hole

- AP: Canal is just lateral to midline
- Lateral : Anterior corner of the joint

Tornetta, JOT 1999
Intramedullary Nailing (IMN)

- Reamed interlocked nails:
 - High union rates
 - Low malunion rates
 - Low infection rates

- Primary indication:
 - Diaphyseal fractures
 - Distal fractures within 4 cm of the ankle joint

Ream or Not?

<table>
<thead>
<tr>
<th></th>
<th>Reamed</th>
<th>Non-Reamed</th>
</tr>
</thead>
<tbody>
<tr>
<td># pts.</td>
<td>73</td>
<td>63</td>
</tr>
<tr>
<td>Nonunion</td>
<td>4%</td>
<td>11%</td>
</tr>
<tr>
<td>Malunion</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Broken Bolts</td>
<td>3%</td>
<td>16%</td>
</tr>
<tr>
<td>Time to Union</td>
<td>16.7 wks</td>
<td>25.7 wks</td>
</tr>
</tbody>
</table>

Larsen JOT '04

CLOSED Fractures: Reamed vs. Unreamed Nails

- Prospective randomized studies

- Nonreamed nails:
 - Increased time to union
 - Increased locking screw breakage (old nails)

 Knee pain and compartment syndrome rates were similar
Reamed vs Unreamed: SPRINT

- Possible benefit of reamed IM nails for closed fractures
- No difference for open fractures
- Delaying reoperation for nonunion for at least 6 months significantly lowers the need for reoperation

Knee pain s/p IMN

- Occurs in 10-60% of patients
- No difference in knee pain if a patellar tendon splitting approach is used vs. a parapatellar incision
- Usually activity related and made worse by kneeling

Knee pain s/p IMN

- In one study there was no correlation between nail protrusion and knee pain
- 80% of patients had total or partial pain relief with nail removal
- Cause is unknown
Standard ORIF: Tibial Shaft

• Open reduction with wide exposures is usually avoided because of infection and soft tissue complications.

• MIPPO techniques:
 – Distal and proximal 1/3 fractures

“MIPO” ORIF

• Relative plating indications:
 – Fractures with extension into the ankle or knee joint
 – Arterial injuries requiring repair
 (exposure may already be done)
 – Proximal and distal 1/3 fractures
 (increased incidence of deformity with IMN’s)

External Fixation

• Minimizes further disruption of the soft tissue and blood supply of fracture fragments

• Current indications:
 – Initial rx high grade open fractures with massive contamination
 – Damage control orthopedics:
 • “Sick” patients
 • “Sick limb”
External Fixation

- Complications:
 - Malunion
 - Delayed and nonunion
 - Pin tract infections

- ***Higher rate of malunion compared with IMN***

Open Tibial Shaft Fractures

Mechanism of Injury

Lower energy, torsional type injury (e.g., skiing)

More common with higher energy direct force (e.g. car bumper)
Priorities

- ABC’S
- Assoc Injuries
- Tetanus
- Antibiotics
- Soft Tissue Management/Fixation
- Long term issues

Physical Examination

- Given subcutaneous nature of tibia, deformity and open wound usually readily apparent
- Circumferential inspection of soft tissue envelope, noting any lacerations, ecchymosis, swelling, and tissue turgidity

Physical Exam

Neurologic and vascular exam of extremity including ABI’s if indicated

Wounds assessed once in ER, then covered with sterile gauze dressing until treated in OR- digital camera / cell phone

Wound classification after surgical debridement
Classification of Open Tibia Fractures

Gustilo and Anderson open fracture classification first published in 1976 and later modified in 1984. In one study, interobserver agreement on classification was only 60%.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Clean wound ≤ 1 cm in length</td>
</tr>
<tr>
<td>Ib</td>
<td>Clean wound ≤ 1 cm in length without extensive soft tissue damage, flap, or amputation</td>
</tr>
<tr>
<td>IIA</td>
<td>Adequate soft tissue coverage despite moderate soft tissue damage, flap, or high energy trauma involving the wound site</td>
</tr>
<tr>
<td>IIB</td>
<td>Inadequate soft tissue coverage with peripheral ischemia, often associated with massive soft tissue loss</td>
</tr>
<tr>
<td>IIIA</td>
<td>Articular injury requiring repair</td>
</tr>
</tbody>
</table>

Limb Salvage

- Over all assessment of the limb and the patient
 - Associated injuries
 - Age/ pre-existing medical conditions
 - Degree of muscle damage
 - Bony injury
 - Vascular injury
 - Plantar sensation
 - Anatomic disruption!!!!!!!!!!!!

LEAP Data

- Outcome at 2 and 7 years was the same for amputees and salvaged limbs
- All patients were severely disabled
- Salvage has a higher incidence of complications, more operations, and more hospitalizations
Limb salvage scoring systems

- Low sensitivity
- High specificity
- About 20% of amputations occur at scores below the cutoff value
- Do not use scoring systems alone to determine amputation vs. salvage

Open Fractures

- Infection incidence depends on:
 - *Degree* of soft tissue and bone injury
 - *Extent* of contamination
 - Timing/ use of antibiotics
 - Adequacy of debridement
 - *not under surgeon control*

Open Fracture Treatment

Surgical emergency

ER wound care:
 - cover with a sterile dressing

Debride wound and stabilize fracture in OR

Re-debride every 48-72 hours until the wound is healthy, if needed
Antibiotics

- Closed, grade I, grade II, grade IIIA open fractures:
 - Cephalosporin for 24-48 hours

- Grade IIIB and IIIC injuries:
 - add amino glycoside

- Anaerobic contamination (barnyard injury):
 - add penicillin

Open Fracture Treatment

- Antibiotics: 24-72 hours initially
- 24 hours after subsequent debridments
- Soft tissue coverage should be obtained as early as possible

Treatment of Soft Tissue Injury

- Careful planning of skin incisions
- Essential to fully explore wound as even Type 1 fractures can pull dirt/debris back into wound and on fracture ends
- All foreign material, necrotic muscle, unattached bone fragments, exposed fat and fascia are debrided
Large Fragments: What to do?

Infection Rates if retained - 21%

- Infection Rates if removed - 9%
 - Edwards CC, CORR, 1998

- Use to assist in determining length, rotation and alignment

Bone Defects

- PMMA – aminoglycoside +/- vancomycin
- Bead pouch
- Solid spacer

Bone Defects: PMMA Spacer

Masquelet AC, Reconstruction of the long bones by the induced membrane and spongy autograft (French). Ann Chir Plast Esthet 2000
Soft Tissue Coverage

• Definitive coverage should be performed within 7-10 days if possible

• Most type 1 wounds will heal by secondary intent or can be closed primarily. Hohmann E, Comparison of delayed and primary wound closure in the treatment of open tibial fractures. Arch Orthop Trauma Surg 2007

• Delayed primary closure usually feasible for type 2 and type 3a fractures

Soft Tissue Coverage

• Type 3b fractures require either local advancement or rotation flap, split-thickness skin graft, or free flap

• STSG suitable for coverage of large defects with underlying viable muscle

Soft Tissue Coverage

- Proximal third tibia fractures can be covered with gastrocnemius rotation flap

- Middle third tibia fractures can be covered with soleus rotation flap

- Distal third fractures usually require free flap for coverage
Stabilization of Open Tibia Fractures

Options depending on fracture pattern and soft tissue injury:

- IM nail - reamed vs. unreamed
- External fixation
- ORIF

Unreamed IMN + Open Fractures

Combined with aggressive debridment

- Pooled data
- Grade I: < 3% infection
- Grade II: 4%
- Grade IIIA: 7%
- Grade IIIB: 17%
- Infection probably more related to degree of injury rather than implant
Reamed vs Unreamed: SPRINT

• Possible benefit of reamed IM nails for closed fractures
• No difference for open fractures
• Delaying reoperation for nonunion for at least 6 months significantly lowers the need for reoperation

BMPs

• BMP-2 (Infuse) FDA approval in subset of open tibia fractures BESTT study group JBJS 84, 2002
• Significant reduction in the incidence of secondary procedures
• Accelerated healing
• Lower infections

Compartment Syndrome
Compartment Syndrome

• 1-9% of tibia fractures
• Open and closed fractures
• Sports injuries!!!!!
• Diagnosis:
 – Clinical diagnosis in awake alert patients
 – Use pressure measurements for patients with altered mental status

Compartment Syndrome: Symptoms

• Pain out of proportion to injury:
 – Patient was comfortable and no longer is
 – Escalating doses of pain meds
• Pain with passive stretch
• Paresthesias (nerve ischemia)
• Pallor (too late)
• Paralysis (too late)

Compartment Syndrome

• Pressure measurements:
• Especially useful:
 – Unresponsive patients
 – those who’s clinical symptoms are unclear
• Use a side port needle
 – Pressured measured with a simple needle are 15-20 mm Hg higher.
• The highest pressures are adjacent to the fracture site.
Pressures Not Uniform

- Highest at Fracture Site
- Highest Pressures in:
 - Deep Posterior
 - Anterior
 - Heckman JBJS '76

ICP Threshold for Fasciotomy

- Absolute pressure is unclear: 30-45 mm Hg
- ΔP: DBP- ICP <30 mm Hg is less than 30 mm Hg

Tibial Compartments

- Anterior:
 - Deep peroneal nerve
 - Sensation to 1st web space
- Lateral:
 - Sup peroneal nerve
 - Sensation to dorsum of foot
Tibial Compartments

- Deep posterior:
 - Tibial nerve
 - Sensation to sole of foot
- Superficial posterior:
 - Medial sural cutaneous nerve
 - No predictable sensation

Management:

1. Split Casts and Bandages!
 - Circumferential casts or dressing decrease the volume of a compartment

Management

- 4-compartment fasciotomy
- One (lateral) or two (medial and lateral) incisions
Management

- Long skin and fascial incisions
- Leave them open (vac)
- Back to OR every 48 hours or so
- Closure vs. STSG

End