Humeral Shaft Fractures - Approaches & Techniques

Incidence
- 3-5% of all fractures
- bimodal age distribution
 - young patients with high-energy trauma
 - elderly, osteopenic patients with low-energy injuries

Non-operative Rx
- Most humeral fractures are amenable to closed, nonsurgical treatment
 - rigid immobilization is not necessary for healing
 - perfect alignment is not essential for an acceptable result

Relevant Anatomy
- Muscles
 - insertion for
 - pectoralis major
 - deltoid
 - coracobrachialis
 - origin for
 - brachialis
 - triceps
 - brachioradialis
- Nerve - radial nerve
 - courses along spiral groove
 - 14cm proximal to the lateral epicondyle
 - 20cm proximal to the medial epicondyle
 - Radial nerve injury common for distal third fractures

Mechanism of Injury
- Direct
 - Direct blow most common cause
- Indirect forces
 - Violent muscle contraction
 - Torsion => spiral fx

Fracture Descriptors
- Location
- Pattern
- Low-energy vs. high-energy
- Open / Closed Injury

Imaging
- Standard radiographic examination
 - AP view
 - lateral view
 - Include both joints

Nonsurgical Treatment
- Most humeral fractures are amenable to initial closed, nonsurgical treatment
 - rigid immobilization not necessary for healing
 - perfect alignment not essential for an acceptable result
Expert Panel & Case Discussions: Upper Extremity Fractures
Humeral Shaft Fractures - Approaches & Techniques
Laura S. Phieffer, MD Ohio State University Wexner Medical Center

October 12, 2013

- Closed Treatment
 - Coaptation splint for 7-10 days followed by functional brace
 - gold standard and indicated in vast majority of humeral shaft fractures
 - criteria for acceptable alignment include:
 • < 20° anterior angulation
 • < 30° varus/valgus angulation
 • < 3 cm shortening
 - Functional bracing
 • Rigid, light weight prefabricated plastic brace
 • Anterior and posterior shell, Velcro straps
 • Early application may be associated with higher percentage of healing

- Nonsurgical Treatment – Requirements
 - A cooperative, preferably upright and mobile patient
 - A dedication to close patient supervision & follow-up
 - An acceptable reduction

ORIF
- Absolute indications
 - open fractures
 - vascular injury requiring repair
 - brachial plexus injury
- Relative indications
 - ipsilateral forearm fracture (floating elbow)
 - bilateral humerus fracture
 - polytrauma or associated lower extremity fracture
 • allows early weight bearing through humerus
 - pathologic fractures
 - burns or soft tissue injury that precludes bracing
 - fracture distraction

Approaches
- Surgical approach is dependent on the fracture level and the need to visualize the radial nerve
- Anterolateral, posterior incisions most common
- Lateral and medial approaches are described but not commonly used
- Anterolateral approach is preferred for proximal third fractures
- Anterolateral and posterior approach are both adequate for midshaft and distal third fractures
- Posterior approach is preferred for distal third fractures

Anterolateral approach
- used for proximal third and midshaft fractures
- distal extension of the deltopectoral approach
- radial nerve identified between the brachialis and brachioradialis distally
- Benefits
 - Supine positioning
 - Proximal extension possible via deltopectoral interval
- Drawbacks
 - Allows for less direct exposure of radial nerve since it lies posterior to intermuscular septum
Posterior approach
- used for distal to middle third shaft fractures
- triceps may either be split or elevated off the posterior humeral shaft
- radial nerve is found medial to the long and lateral heads and 2 cm proximal to the deep head of the triceps
- radial nerve exits the posterior compartment through lateral intramuscular septum 10 cm proximal to radiocapitellar joint
- posterior antebrachial cutaneous nerve serves as an anatomic landmark leading to the radial nerve during a paratricipital approach
- Benefits of posterior approach
 - Allows more direct exposure of the radial nerve
 - Allows application of a broad plate to flat surface of distal humerus for distal third fractures
- Drawbacks to posterior approach
 - Requires lateral or prone positioning which may be problematic for polytrauma patient
 - Requires nerve mobilization for plate application, theoretically increasing risk of iatrogenic palsy

Postoperative Management
- Sling or splint for postoperative comfort
- Begin early (within 1 week) ROM
- WBAT for shaft fractures
- NWB for fractures that extend into the proximal and distal thirds

Outcomes
- High union rates (90-98%)
- Iatrogenic radial nerve palsy 2-5%
 - Often resolves in 3-6 months
 - EMG evaluation with prolonged palsy
 - Exploration and consideration tendon transfers when no fcn returns by 6 months
- Limited prolonged stiffness unless proximal and distal third