Talus fractures

Philipp Leucht, MD Stanford University School of Medicine

Orthopaedic Trauma course for NP/PAs OTA 2013

Outline

- Anatomy
- Surgical Approaches
- Fixation strategies
- Outcomes and complications

Anatomy Bone

- 60-70% articular cartilage
- No muscular attachments
- Complex articulations

Anatomy Vascular

- Posterior Tibial
 - Artery of the Tarsal Canal Deltoid Artery (really off the Art of the Tarsal
- Anterior Tibial
- Perforating Peroneal
- Artery of the Tarsal Sinus

Injury mechanism

- Forced Dorsiflexion
 - Dorsiflexion causes tibiotalar impingement, leads to neck fracture
 - Dorsomedial comminution
 - not reproduced biomechanically

• Shear Force

Classification Hawkins*--Prognostic Based on Blood Flow Type I Nondisplaced Type II Subtalar subluxation or dislocation Type III Subtalar and tibiotalar dislocation Type IV Type II with talonavicular subluxation or dislocation Type II with talonavicular subluxation or dislocation

Radiographic Evaluation

- Ankle Series
- · Foot Series
- · Canale View
- CT Scans
 - Consider for head, body, and lateral process fractures

Treatment Closed Methods

- · Non-operative (rare)
 - For truly undisplaced fractures
- · Closed Reduction
 - Realignment of gross displacement or dislocation
 - important for soft tissues
 - becomes increasingly more difficult with severity of fracture

Treatment Principles

- Accurate alignment of talar neck
 - Re-establish hindfoot mechanics
- Stable fixation
 - Maximize revascularization potential
 - Allow early ROM

Treatment Exposure

- Surgical Approaches
 - Combined anteromedial and anterolateral

*Mayo KA:Fractures of the talus: Principles of management and techniques of treatment. Tech Orthop 1987;2

Operative Considerations

- · Radiolucent table
- · Small clamps
- Small distractor or external fixator
- Small/mini-fragment fixation
 - 1.5mm
 - 2.0mm
 - 2.4mm
 - 2.7mm & 3.5mm
 - Mini-fragment plates occasionally

Intra-operative techniques

- Reduce and judge alignment through both approaches
- Lateral cortex usually provides good read (tension failure)
- Medial comminution (no lag screw fixation)
 Cancellous bone graft/ structural bone graft
- · Avoid stripping
- K-wire through talar head as reduction aid

Reduction of a Dislocated Talar Body

- · Infrequently works in the ER... but worth a try.
- GA for paralysis
- Flex the knee, traction on the the hindfoot, direct pressure on the talar body
- For open reduction: Dual exposure
- Medial and lateral distractors (ex-fix) with a transcalcaneal pin
- · Malleolar osteotomy

The body is usually between the posteromedial aspect of the tibia and the Achilles tendon, immediately adjacent to the posteromedial neurovascular bundle

Medial malleolar osteotomy

Post-operative rehabilitation

- · Early ROM exercises once skin allows
- NWB for 12 weeks
- in cases with ligamentous instability, longer cast immobilization might be considered

Complications

- Delayed union
- Nonunion
- Malunion
 - Particularly varus
- · Subtalar and ankle arthritis
- Osteonecrosis

Outcome

- AVN most common complication, followed by infection, mal-/nonunion
- Hawkins sign is good predictor of appropriate blood supply at 6-8

Table 1 Complications Following Talar Neck Fractures*

Fracture		Degenerative Joint Disease	Malunion
Туре	Osteonecrosis		
Туре I	0%-13%	0%-30%	0%-10%
Type II	20%-50%	40%-90%	0%-25%
Type III/IV	8%-100%	70%-100%	18%-27%

Outcome

- · Sanders et al.
 - Excellent functional outcomes if pt did not require 2° reconstructive procedure
 - Development of varus and/or ST arthritis leads to poor functional outcomes
 - Most common indication for 2° surgery was ST arthritis.
 - Risk factors for 2° surgery were comminution, high Hawkin's type, and associated L/E fractures.
 - All markers of higher-energy injuries
 - Time between injury and surgery did not correlate with outcome
 - 12% AVN rate (much lower than most other reports).

Sanders, DW, et al. J Orthop Trauma. 18;5, 2004

Summary

- Delayed fixation has no effect on outcome, union or AVN
- Outcomes worse with comminution, open injuries, varus
- Post-traumatic arthritis is common
- AVN may be partial and not lead to collapse
- Set expectations