Treatment of the Polytrauma Patient

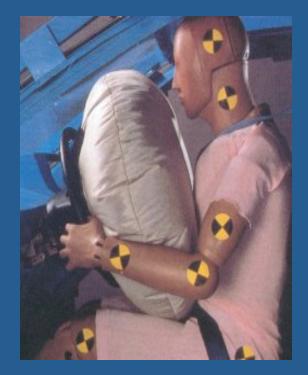
Troy Caron DO

Trauma in the US

 Leading cause of death in < 45 age group

•**\$75 billion loss** in income due to death and disability annually

 12% of hospital beds occupied by trauma patient



Trauma Epidemiology

•Number of polytrauma patients increasing

> Air bagspolytrauma patients surviving

Trauma Centers

- Studies demonstrate a 30-40% preventable death rate due to inadequate trauma systems
 - West, Trunkey: Arch Surgery, 1979
 - Mortality 73% to 9%
 - West, Cales: Arch Surgery, 1983
 - Mortality 71% to 9%
 - Baker, et al: J Trauma, 1987
 - Bypass nearest hospital got to trauma center

Protocol for Management

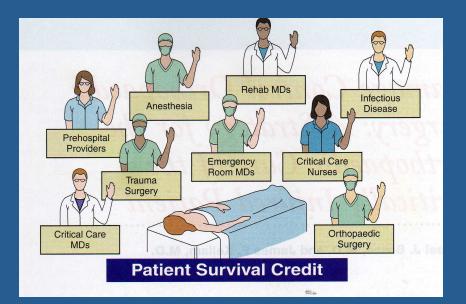
• **Biffl et al**, Evolution of a mutlidisciplinary clinical pathway for the management of unstable patients with pelvic fractures. JT, 2001

 5 elements: Immediate trauma surgeon availability (+ Ortho!) Early simultaneous blood and coagulation products Prompt diagnosis & treatment of life threatening injuries Stabilization of the pelvic girdle Timely pelvic angiography and embolization
Changes: Patients more severely injured (52% vs 35% SBP < 90) DPL phased out for U/S Pelvic binders and C-clamps replaced traditional ex fix

Protocol for Management

• **Biffl et al**, Evolution of a mutlidisciplinary clinical pathway for the management of unstable patients with pelvic fractures. JT, 2001

Mortality decreased Exsanguination death MOF Death (<24 hours)


from 31% to 15% from 9% to 1% from 12% to 1% from 16% to 5%

The evolution of a multidisciplinary clinical pathway, coordinating the resources of a level 1 trauma center and directed by joint decision making between trauma surgeons and orthopedic traumatologists, has resulted in improved patient survival. The primary benefits appear to be in reducing early deaths from exsanguination and late deaths from multiple organ failure.

Goal of a Trauma service

- IMPROVE OUTCOME (quality of life)
- Outcome = Anatomic injury + Physiologic Injury + Patient reserve
- Physiologic injury
 - Adequate resuscitation before definitive treatment
- Anatomic (orthopedic injury)
 - Appropriate timely treatment of fractures
 - Early mobilization
 - Decrease risk of infection

Trauma Team Approach

Skeletal trauma 4th ed.

- Improved outcomes
 - Acute
 - In hospital
 - After D/C

Trauma Mortality

- Early phase immediate death
 - severe brain injury, disruption of great vessels, cardiac disruption
- Second phase minutes to hours
 - subdural, epidural hematomas, hemopneumothoraces, severe abdominal injuries, multiple extremity injuries (bleeding)
- Third phase delayed
 - multisystem organ failure
 - sepsis

• Where do you start?

ABC'S

Primary Survey

Airway with c-spine protection Breathing and ventilation Circulation with hemorrhage control Disability: Neuro status Exposure / Environmental control

Quick Assessment

What is a quick, simple way to assess a patient in 10 seconds?

Quick Assessment

What is a quick, simple way to assess a patient in 10 seconds?

• Ask the patient his or her name

Ask the patient what happened

Appropriate Response Confirms

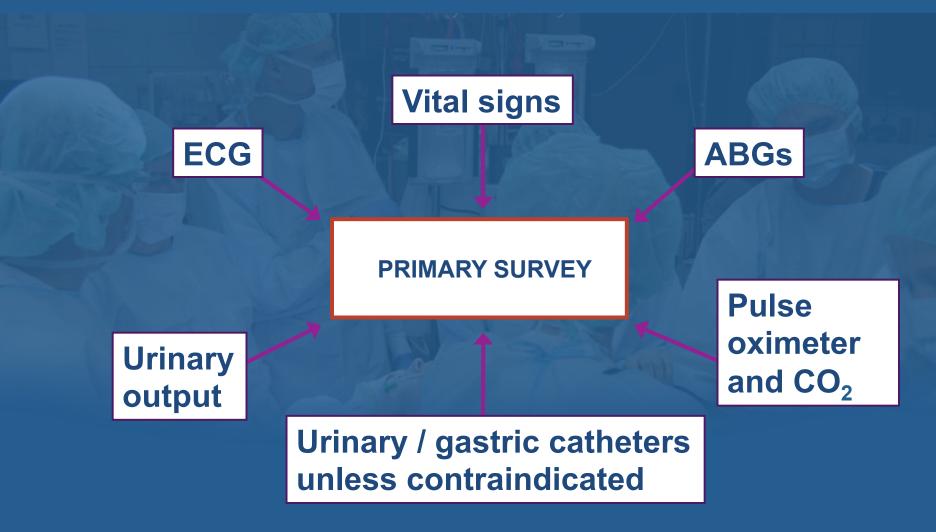
A Patent airway

B Sufficient air reserve to permit speech

C Sufficient perfusion

Clear sensorium

What is the role of the orthopedic surgeon?


- Airway
- Breathing
- CIRCULATION
 - Pelvis
 - Pressure on bleeding wounds
- Disability
 - Spinal Cord
- Exposure

- Identifying open wounds

Resuscitation


- Protect and secure airway
- Ventilate and oxygenate
- Stop the bleeding!
- Crystalloid / blood resuscitation
- Protect from hypothermia

Adjuncts to Primary Survey

Adjuncts to Primary Survey

Diagnostic Tools

Adjuncts to Primary Survey

Diagnostic Tools

Definition of Shock

What is shock?

Definition of Shock

What is shock?

Shock is an abnormality of the circulatory system that results in inadequate organ perfusion and tissue oxygenation.

Definition of Shock

Generalized State of Hypoperfusion

- Inadequate oxygen delivery
- Catecholamines and other responses
- Anaerobic metabolism
- Cellular dysfunction
- Cell death

Recognition of Shock

Is the patient in shock?

Recognition of Shock

Is the patient in shock? Alteration in level of consciousness, anxiety Cold, diaphoretic skin Tachycardia Tachypnea, shallow respirations Hypotension Decreased urinary output

Cause of Shock

What is the cause of shock?

Cause of Shock

What is the cause of shock?

VS

<u>Hypovolemic</u>

Blood loss Fluid loss Nonhemorrhagic Tension pneumothorax Cardiac tamponade Cardiogenic Neurogenic Septic

Cause of Shock

What is the cause of shock?

In the vast majority of trauma patients, shock is due to blood loss.

Shock Assessment

Methods of Locating Bleeding

Physical examination Diagnostic adjuncts to primary survey Chest X-ray Pelvic X-ray FAST / DPL

Interventions

What can I do about shock?

Interventions

What can I do about shock?

Hemostatic resuscitation

Angio-embolization

Splint fractures

Direct pressure/ tourniquet

Reduce pelvic volume

Operation

Hemostatic Agents

Interventions

What can I do about shock?

Balanced resuscitation

Accepting a lower-than-normal blood pressure

Packed red blood cells, FFP, platelets

Not a substitute for definitive surgical control of bleeding

Too much may be as bad as too little.

Patient Response

What is the patient's response?

Patient Response

What is the patient's response?

Identify improved organ function Skin: warm, capillary refill Renal: increased urinary output Vital signs CNS: improved level of consciousness

Patient Response

What is the patient's response? Related to volume or persistence of hemorrhage

Rapid responder Transient responder Nonresponder

Class I Hemorrhage

750 mL Blood Volume Loss (15%)

Slightly anxious Normal blood pressure Heart rate < 100 / min Respirations 14-20 / min Urinary output 30 mL / hour

Crystalloid

Class II Hemorrhage

750-1500 mL Blood Volume Loss (15-30%)

Anxious Normal blood pressure Heart rate > 100 / min Decreased pulse pressure Respirations 20-30 / min Urinary output 20-30 mL / hour

Crystalloid

Class III Hemorrhage

1500-2000 mL Blood Volume Loss (30-40%)

Confused, anxious Decreased blood pressure Heart rate > 120 / min Decreased pulse pressure Respirations 30-40 / min Urinary output 5-15 mL / hour

Crystalloid, blood components, definitive control of bleeding

Class IV Hemorrhage

> 2000 mL Blood Volume Loss (> 40%) Confused, lethargic **Hypotension** Heart rate > 140 / min **Blood components**, definitive control of Decreased pulse pressure bleeding Respirations > 35 / min Urinary output negligible

Patient is hemodynamically unstable

Bleeding cancellous bone

Venous bleeding

Arterial bleeding

Hemorrhage Control pelvis

- Pelvic Containment
- Sheet
- Pelvic Binder
- External Fixation
- Angiography
- Pelvic Packing

Bleeding bone Venous bleeding

Arterial bleeding

Pelvic Fractures

Hemodynamically Abnormal Patients

Primary Survey

What are my priorities and management principles?

Primary Survey

What are my priorities and management principles?

During the Primary Survey

Stop the bleeding! (pressure - tourniquet) Splint the extremity

Primary Survey

Rationale for Splinting

Prevents further blood loss and injury Can restore or maintain perfusion Relieves pain Important during evaluation Do not delay

<u>Look</u> Deformity Wound(s) Listen

Doppler signals Bruit **Feel**

Crepitus Skin flaps Neurologic deficit Pulses Tenderness

Early Concerns

Vascular compromise Open fractures Compartment syndrome

Assess and Manage Vascular Compromise

- Reduce fracture(s)
- Splint fracture(s)
- Assess by doppler
 - Ankle / brachial index

Managing Open Fractures

- Apply appropriate splint
- Cleanse/debride (now or later)
- Consider time factor
- Antibiotic / tetanus status

X-Ray Studies

- What x-rays do I need?
 - Any suspected area
 - One joint above and below
- When do I obtain them?
 - Patient is hemodynamically normal

Orthopaedic Urgencies/ Emergencies

- Open fractures
- Dislocations
- Compartment syndromes
- Cauda equina syndrome
- Extremities with neurological or vascular compromise

Summary

- Dynamic Process
- Must work as a team
- Be available to assess and provide quality care