Disclosures

- No relevant disclosures
Ankle Anatomy: Lateral ankle ligaments

![Lateral ankle ligaments diagram](image)

Figure S2-5

Ankle Anatomy: Medial ankle ligaments

![Medial ankle ligaments diagram](image)
Ankle Anatomy: Syndesmosis

Instability
Instability

• Inability to keep the talus perfectly positioned under the plafond

• How much is too much?
 o 1mm of translation → 42% articular tibiotalar contact area decrease
 (Ramsey, JBJS, 1976)

Instability

• Tibiofibular clear space: <6mm (AP & mortise)

• Tibiofibular overlap: >6mm (AP) and > 1 (mortise)

• Medial clear space: <5mm or equal to superior clear space
Instability

- Preoperative
 - Contralateral imaging
 - Stress x-rays
 - Dorsiflexion external rotation stress test
 - Gravity stress test
 - WB xray

- Intraoperative
 - Contralateral imaging
 - Stress maneuvers
 - Dorsiflexion external rotation stress test (more reliable)
 - Matuszewski et al. JOT, 2015
 - Modified Cotton exam
 - Both maneuvers may have high specificity but lower sensitivity
 - Pakarinen et al. JBJS, 2011.

Ankle fracture patterns and classifications
Operative vs Nonoperative Treatment of Unstable Ankle Fractures
Donken et al. *JOT*, 2012

- Retrospective with median 21 years followup
- 148 patients with SER II-IV
 - Congruent ankle → nonoperative
 - Unstable ankle → surgery
 - No stress x-rays but close serial x-rays if nonoperative
- No difference between operative and nonoperative groups in respect to function (O-M), loaded dorsal ROM, MCS, OA
- When ankle maintains congruity, ankle fractures do well long term

- Retrospective
- 51 Weber B lateral malleolus fractures (bimalleolar equivalent)
- Gravity stress test AOFAS
 - 4-5 mm MCS 90, 89
 - 6-7 mm MCS 72, 63
- Conclusions
 - More lateral instability results in worse functional outcomes
 - Medial ecchymosis or tenderness no a good predictor of instability

- Retrospective
- 43 Weber B lateral malleolus fractures (bimalleolar equivalent)
 - 26 non-operative vs 17 operative
- Findings
 - Age <30 had improved functional outcomes vs age > 50
 - MCS >5mm on stress xray only had best functional score (O-M 90)
 - 5-10mm MCS → 76
 - >10mm MCS or subluxation on presentation → Gravity stress test

- Prospective multicenter RCT
- 81 patients with non-displaced, unstable lateral malleolar fractures (>/- 5mm MCS)
 - 41 operative
 - 40 non-operative (cast/boot with 6weeks protected WB)
- Findings:
 - No function differences at 12 months (Olerud-Molander & SF-36)
 - Non-operative group: 8 pts final MCS >/= 5mm; 8 delayed/nonunions
 - Operative: 5 infections; 5 implant removals
- Conclusions
 - Non-operative treatment may be reasonable, certainly in older or less active patients
 - ORIF for younger, active patients as natural history of misalignment not fully understood

- Retrospective
- 41 patients with isolated lateral malleolus fx
 - MCS <7mm on gravity stress xray
 - Normal ankle mortise on WB xrays
- 1 year follow-up
- Findings:
 - Good functional outcomes (AOFAS 93, O-M 91, VAS 0.57)
 - No MCS widening
 - *Proposed WB xrays as stress test of choice*
 - Gravity stress may overestimate instability

Role of MRI

- 21 isolated lateral malleolus fractures (bimal equivalent)
 - Without initial subluxation/dislocation
 - Stress positive (≥5mm or >1mm contralateral)
 - Offered surgery or MRI
- 19 patients with partial deltoid injuries; complete deltoid injuries treated operatively
- Minimum 1 year followup.
- Treated non operatively, WBAT in boot.
- 15 patients with follow-up
 - 14 with AOFAS 100 scores
 - 15 with SF-36 normal
 - 14/15 would undergo same treatment

Warner et al. JOT, 2015

- Retrospective
- 300 ankle fracture in 6 years
- Compared MRI, injury x-rays, and intra-operative findings
- 94% agreement between MRI and LH class
- 85% agreement between MRI and LH grade
- No cases with complete ligament tear and medial malleolar fracture
- Conclusions:
 - Injury x-rays and intra-operative assessment is gold standard
 - MRI is not necessary in most circumstances

- Retrospective review of prospective database
- 122 SER III and IV without PM fracture
- 97% (119/122) PITFL delamination or avulsion from PM
 - Very few midsubstance injuries
- Conclusions:
 - Most syndesmotic injuries without PM fractures, may be amendable to soft tissue repair
 - MRI in SER III and IV injuries without PM fractures likely not necessary

- 61 patients with isolated SER lateral malleolus fractures
- DER stress test vs MRI
- Interobserver reliability: Stress test (94%) > MRI (72%)
- Did not recommend routine use of MRI to evaluate stability
When to weightbear ankle fractures?

- Stable fractures treated nonoperatively \rightarrow immediate WB in SLC or boot.
- Unstable fractures treated nonoperatively \rightarrow NWB
- Operative ankle fractures without syndesmosis instability \rightarrow early WB can be tolerated (SER patterns only) without complication
 - Ongoing WOW! pRCT in Netherlands
- Operative ankle fracture with syndesmosis instability \rightarrow 6-12 weeks? Earlier?
When to weight bear ankle fractures?

- Ligaments take longer than bone to heal
- Stable fixation? Articular impaction?
- Early goals
 - Reduce swelling and inflammation
 - Wound healing
- Patient early needs
 - Isolated injury vs polytrauma

Advanced ankle topics summary

- Unstable vs Stable (particularly SER patterns)
 - Anatomically aligned fractures do well
 - Increased displacement on stress x-rays do poorer
 - WB stress x-ray may be an alternative
- Role of MRI
 - Probably not necessary for stability issues; stress imaging = gold standard
- WB ankle fractures
 - Stable fracture (whether nonop or stable after fixation) probably can tolerate early WB
 - Syndesmotic injuries may take longer