NONUNION
OTA Advanced
Dallas 2017
Horwitz, Jones, Anders

Definition
Nonunion Definition(s)

1. Historically: Fracture that has not united within 6 months s/p treatment
2. Historically: Fracture that has not demonstrated healing progress over 3 months
3. FDA: Fracture that has not united within 9 months s/p treatment
4. Fracture that lacks potential to heal without further intervention

Diagnosis
Diagnosis: Imaging

1. Radiographs
 - Residual Fracture Line
 - Exuberant Callus
 - No Remodeling of Callus
 - Resorption at Fracture Ends
 - Implant Failure

2. CT
 - Incomplete or No Osseous Bridging

3. SPECT CT
 1. Uptake at fracture site

Diagnosis: Clinically

1. Pain
 - At fracture site
 - When weight bearing

2. Limp
 - With or without pain
 - Dyskinesia

3. Mechanical Irritation
 - Mobility at fracture site
 - Crepitus

4. Swelling
 - At fracture site
 - At hardware site
Classification

Classifying

- Location in bone:
 - diaphyseal, metaphyseal, intra
- Infection: septic or aseptic
- Alignment: with or without deformity
- Manual testing: stiff or mobile
- Radiographic appearance:
 - Hypertrophic, Atrophic, Bone loss, Oligotrophic
Types of Non-unions

VASCULAR
Hypertrophic

AVASCULAR
Atrophic

Mechanical Problem

Biologic Problem

Hypertrophic Nonunion

- Inadequate Mechanical Stabilization
- Biology (vascularity) intact
- Too much motion exceeds strain tolerance for bone formation
- Abundant Callus (watch for infection!!)
- Fibrous Tissue Interposed
- “Elephant’s Foot”
Atrophic Nonunion

- Inadequate vascularity
- There may also be a lack of stability
- Little or no callus
- Smooth bone ends/resorb
- Sclerotic medullary canal

Synovial Pseudarthrosis

- Cavity
- Synovium-like lining
- Joint Fluid
- Sclerotic Bone Ends
Types of Non-unions

Dror Paley Classification

1. Bone Loss (< 1cm >)
2. Mobility
3. Deformity

Risk Factors
What causes healing problems?

- Defects
- Dysvascular segments
- Infection
- Poor mechanical stabilization, fibrous union

Infection - Lab Studies

- WBC - unreliable
- Differential - ↑ neutrophils
- Sedimentation rate
 - ↑ ESR - nonspecific for infection
 - Peak 3 - 5 days after onset
- C-reactive protein
 - Peak elevation within 6 hours
 - Useful to follow treatment
Workup

• Intermittently draining sinus

Osteomyelitis Imaging

• Plain radiographic signs
 – Bone destruction - 2-3 week delay
 – Sequestrum - avascular sclerotic cortical bone
 – Implant/bone resorption - endosteal halo around IM nail and locking screws
 – Implant loosening
Osteomyelitis Imaging

- CT scan - identify sequestrum, abscess, intramedullary extension
 - Disadvantage - metallic artifact

Osteomyelitis Imaging

- MRI
 - $T_1 \downarrow$ marrow signal
 - $T_2 \uparrow$ marrow signal
 - 90% sensitive/specific
 - Disadvantage - metallic artifact, false positives due to healing fracture
 - More difficult than in atraumatic osteo workup, soft tissue changes...
Osteomyelitis Imaging

- 3 phase Tc99 bone scan
 - Flow phase - drug injection
 - Blood pool phase - 5 minute intervals
 - Delayed bone imaging phase - 3 hours later
- Osteomyelitis image
 - ↑ activity all 3 phases
- Disadvantages
 - nonspecific with healing fracture/post-op changes (↑ osteoblastic activity)

Osteomyelitis Imaging

- Indium-111 labeled WBC scan
 - Radiolabelled patients WBC go to osteomyelitis focus
 - Fair specificity alone
Osteomyelitis Imaging

- Sequential Tc99/Indium-111 or Ceretec Labeled WBC scan
 - Best mode for detecting infection in unhealed fracture
 - Infection ruled out with cold WBC scan
 - 90% sensitive/specific

\[\text{Tc-99 ~ Indium-111} \]

Infection - Intraop Diagnosis

- STAT gram stains - poor sensitivity
- Surgeon’s opinion - poor sensitivity
- Frozen section
 - <5 PMN/HPF - negative
 - >10 PMN/HPF - positive
 - 5-10 PMN/HPF - equivocal
- Positive culture - Gold Standard?
Infection - Intraop Diagnosis

- As high as 15 – 20% positive cultures from asymptomatic hardware removal
- Multiple sites
- Clinical dilemma?

Nonunion: Risk Factors

- Patient
- Injury
- Surgeon
Injury Factors

1. Traumatic Vascular Injury
2. Periosteal Stripping
3. Muscle Loss & Necrosis

Blood Supply
Rhinelander, CORR, 1974
Blood Supply
Rhinelander, CORR, 1974

• **Normal** - endosteal/medullary 2/3-3/4
 • internal → external

• **Fracture** - periosteal/external majority
 • internal → external

Centripetal Flow
Rhinelander, CORR, 1974
Soft Tissue Injury > Osseous Injury

<table>
<thead>
<tr>
<th>Type</th>
<th>Description: Gustilo Anderson Classification for Open Tibial Fractures</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open clean wound < 1 cm length</td>
<td>2%</td>
</tr>
<tr>
<td>2</td>
<td>Open wound > 1 cm & < 10 cm without extensive soft tissue damage</td>
<td>7%</td>
</tr>
<tr>
<td>3A</td>
<td>Open wound > 10 cm that is able to be reapproximated with extensive soft tissue damage, special circumstance for gun shot wounds & farm/contaminated wounds</td>
<td>7%</td>
</tr>
<tr>
<td>3B</td>
<td>Open wound that requires rotational or free tissue transfer for osseous coverage</td>
<td>10-50%</td>
</tr>
<tr>
<td>3C</td>
<td>Associated vascular injury that requires repair for viability of limb</td>
<td>25-50%</td>
</tr>
</tbody>
</table>
Factor Subgroup Description: OTA Open Fracture Classification for All Fractures

<table>
<thead>
<tr>
<th>Factor</th>
<th>Subgroup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>1</td>
<td>Mild, < 5 cm and approximates</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Moderate, > 5 cm and approximates</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Severe, does not approximate</td>
</tr>
<tr>
<td>Muscle</td>
<td>1</td>
<td>Mild, no muscle injured or necrotic</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Moderate, localized damage requiring debridement but muscle unit functional</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Severe, extensive damage requiring debridement, muscle unit excised and no longer functional</td>
</tr>
<tr>
<td>Arterial</td>
<td>1</td>
<td>Mild, no major vessel disruption</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Moderate, vessel injury but does not require repair</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Severe, vessel injury requires repair for limb viability</td>
</tr>
<tr>
<td>Contamination</td>
<td>1</td>
<td>Mild, none or minimal contamination</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Moderate, surface contamination easily removed & not imbedded</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>a. Severe, imbedded in bone or soft tissues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Severe, high risk environmental conditions such as farm, fecal, dirty water, etc</td>
</tr>
<tr>
<td>Bone Loss</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Moderate, bone missing but still some contact between proximal & distal segments</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Severe, segmental bone loss without any osseous contact</td>
</tr>
</tbody>
</table>

Overall severity: Any 2 above makes it a Type 2, Any 3 above makes it a Type 3
Type 1 – Mild, Type 2 – Moderate, Type 3 - Severe

Patient Factors

1. Injury
2. Nutrition
3. Age
4. Disease
5. Social/Behavioral
Patient Systemic Biology: Age

- **Periosteal fracture healing potential decreases with age**
 - ↓ periosteal thickness
 - ↓ total cell #
 - ↓ cellular activity

O’Driscoll SWM, JOR 2001

Patient Systemic Biology: Nutrition

- **Malnutrition correlates with delayed fracture healing**
 - Serum albumin
 - Serum transferrin
 - Total lymphocyte count

- Do not assume obese patients are well nourished

Dwyer AJ et al, Orthopedics 2007
Patient Systemic Biology: Disease

• **Diabetes**
 – Diminished osteoblastic activity
 – Reduced bone mineral density
 – Low PDGF levels inhibits cell proliferation
 – Delayed fracture healing

 Lu H, Endocrinology 2003

Patient Systemic Biology: Disease

• **Chronic anemia**
 – ↓ oxygen tissue tension:
 – ↓ bone cellular metabolism
 – Anemic rat model
 – 33% vs 0% nonunion

 Rothman RH, CORR 1971
Patient Systemic Biology: Disease

- Many other diseases
 - Peripheral vascular
 - Chronic renal/hepatic
 - Cancer
 - HIV/AIDS
 - CTD/rheumatoid
- Chronic immunosuppression

Patient Systemic Biology: Age

- Fracture healing gene expression decreases with age
 - BMP-2
 (bone morphogenetic protein)
 - Ihh
 (indian hedge hog)

Meyer RA et al, JBJS 2003
Systemic Biology: Medications

- Many, MANY medications
 - NSAIDS
 - Corticosteroids
 - BMP effective in animal studies
 - RA DMARDs
 - Anti-epileptics
 - Psychotropics
 - Antacids
 - Bisphosphonates
 - Stop meds, add PTH?
- Scrutinize med list

Systemic Biology: Smoking

- Nicotine
 - Small vessel vasoconstriction
 - Delayed neoangiogenesis
 - Demineralization
- Carbon monoxide
 - Hypoxemia
Systemic Biology: Smoking

<table>
<thead>
<tr>
<th>Smoking status at baseline</th>
<th>N</th>
<th>% Unhealed Fracture at 24 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never smoked</td>
<td>81</td>
<td>9.9</td>
</tr>
<tr>
<td>Quit smoking</td>
<td>82</td>
<td>11.0</td>
</tr>
<tr>
<td>Current smoker</td>
<td>105</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Castillo RC & LEAP. JOT 2005

- Even if patient currently smokes: beneficial to quit right now

Surgeon Factors

1. Approach
2. Implant
3. Timing
4. Infection
Approach: Soft Tissue Sparring

Older, Anatomic, Stripping Modern, Soft tissue sparring

Stabilization
Summary – Non Unions

- Definition: variable & arbitrary
- Diagnosis: pain, limp, fixation failure
- Classification: location, biology, infected, mobility
- Risk Factors: injury, patient, surgeon